早教吧作业答案频道 -->数学-->
如图,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FH⊥AE交BC于H,过H作GH⊥BD于G,求①∠HAE=45°,②BD=2FG,③△CEH的周长为定值.
题目详情
如图,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FH⊥AE交BC于H,过H作GH⊥BD于G,求①∠HAE=45°,②BD=2FG,③△CEH的周长为定值.


▼优质解答
答案和解析
(1)连接FC,延长HF交AD于点L,
∵BD为正方形ABCD的对角线,
∴∠ADB=∠CDF=45°.
∵AD=CD,DF=DF,
∴△ADF≌△CDF.
∴FC=AF,∠ECF=∠DAF.
∵∠ALF+∠LAF=90°,
∴∠LHC+∠DAF=90°.
∵∠ECF=∠DAF,
∴∠FHC=∠FCH,
∴FH=FC.
∴FH=AF.
∵FH⊥AE,FH=AF,
∴∠HAE=45°.
(2)连接AC交BD于点O,可知:BD=2OA,
∵∠AFO+∠GFH=∠GHF+∠GFH,
∴∠AFO=∠GHF.
∵AF=HF,∠AOF=∠FGH=90°,
∴△AOF≌△FGH.
∴OA=GF.
∵BD=2OA,
∴BD=2FG.
(3)延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC,
根据△MEC≌△MIC,可得:CE=IM,
同理,可得:AL=HE,
∴HE+HC+EC=AL+LI+IM=AM=8.
∴△CEH的周长为8,为定值.
∵BD为正方形ABCD的对角线,
∴∠ADB=∠CDF=45°.
∵AD=CD,DF=DF,
∴△ADF≌△CDF.
∴FC=AF,∠ECF=∠DAF.
∵∠ALF+∠LAF=90°,
∴∠LHC+∠DAF=90°.
∵∠ECF=∠DAF,
∴∠FHC=∠FCH,
∴FH=FC.
∴FH=AF.
∵FH⊥AE,FH=AF,
∴∠HAE=45°.
(2)连接AC交BD于点O,可知:BD=2OA,
∵∠AFO+∠GFH=∠GHF+∠GFH,
∴∠AFO=∠GHF.
∵AF=HF,∠AOF=∠FGH=90°,
∴△AOF≌△FGH.
∴OA=GF.
∵BD=2OA,
∴BD=2FG.
(3)延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC,
根据△MEC≌△MIC,可得:CE=IM,
同理,可得:AL=HE,
∴HE+HC+EC=AL+LI+IM=AM=8.
∴△CEH的周长为8,为定值.
看了 如图,在正方形ABCD中,A...的网友还看了以下:
(2012•卢湾区一模)在矩形ABCD中,AB=4,BC=3,E是AB边上一点,EF⊥CE交AD于 2020-06-12 …
(2012•卢湾区一模)在矩形ABCD中,AB=4,BC=3,E是AB边上一点,EF⊥CE交AD于 2020-06-15 …
如图,△ABC中,AD平分∠BAC,EF⊥AD交AB于点E,交AC于点F,交BC的延长线于点H.求 2020-06-27 …
f(x),g(x),h(x)在[a,b]上连续,(a,b)上可导,求证存在一个e属于(a,b)使得 2020-07-16 …
一个9位数abcdefghi满足:1.a+b+...+h+i=cd2.a(b+d-c)=243.( 2020-07-19 …
在锐角三角形ABC中,AB≠AC,AD是高,H是AD上一点,连BH并延长交AC于E,连接CH并延长 2020-07-30 …
三元一次方程组a*x+b*y+c*z+d=0,e*x+f*y+g*z+h=0,i*x+j*y+k* 2020-08-03 …
该地质演化过程的正确排序是()A.d-e-g-f-b-a-h-cB.d-g-e-a-c-h-b-fC 2020-11-04 …
一个9位数abcdefghi满足:1.a+b+...+h+i=cd2.a(b+d-c)=243.(e 2020-11-19 …
已知双曲线H:x2a2-y2b2=1(a>0,b>0)一个顶点为(2,0),且H的离心率e=52.( 2021-01-13 …