早教吧作业答案频道 -->数学-->
已知双曲线C的中心在坐标原点,焦点在X轴上离心率e=根号2,焦点到渐近线的距离为1(1)求双曲线C的方程(2)设直线l过点A(0,1)且斜率为k(k>0)在双曲线C的右支上是否存在唯一点B,它到直线l
题目详情
已知双曲线C的中心在坐标原点,焦点在X轴上离心率e=根号2,焦点到渐近线的距离为1
(1)求双曲线C的方程(2)设直线l过点A(0,1)且斜率为k(k>0)在双曲线C的右支上是否存在唯一点B,它到直线l的距离等于1,.若存在,则求出符合条件的所有K的值及相应点B的坐标肉不存在,说明理由
(1)求双曲线C的方程(2)设直线l过点A(0,1)且斜率为k(k>0)在双曲线C的右支上是否存在唯一点B,它到直线l的距离等于1,.若存在,则求出符合条件的所有K的值及相应点B的坐标肉不存在,说明理由
▼优质解答
答案和解析
解;e=c/a=根2,焦点(c,0),渐近线;x/a+-y/b=0 (c/a+0/b)/根(1/a^2+1/b^2)=1 a^2+b^2=c^2 c^2=2a^2 b^2=a^2=c^2/2 a^2=b^2=1 双曲线方程;x^2--y^2=1
(2) 设过A的直线方程;(y-1)/x=k 与该直线平行距离为1,且在该直线下方的直线方程是:
y=kx+1--根(k^2+1) 代入双曲线方程 (bx/a)^2--(kx+1--根(k^2+1))^2=b^2 x>0
x^2--(kx+1--根(k^2+1))^2=1 x^2>1 3--2根(k^2+1)=0 k=0.5*根5
所以;符合条件的K是:k=0.5*根5 符合条件的过A的直线方程:y= 0.5x*根5 +1
这个在右双曲线上,唯一点的坐标是:(根5,2)
结合数形,可以判断这种直线应该有两条,另一条可能是斜率无穷大,不存在,无法从刚才的计算中得到,此直线应该是:y=o ( 右顶点(1,0)到Y抽距离等于1.)
(2) 设过A的直线方程;(y-1)/x=k 与该直线平行距离为1,且在该直线下方的直线方程是:
y=kx+1--根(k^2+1) 代入双曲线方程 (bx/a)^2--(kx+1--根(k^2+1))^2=b^2 x>0
x^2--(kx+1--根(k^2+1))^2=1 x^2>1 3--2根(k^2+1)=0 k=0.5*根5
所以;符合条件的K是:k=0.5*根5 符合条件的过A的直线方程:y= 0.5x*根5 +1
这个在右双曲线上,唯一点的坐标是:(根5,2)
结合数形,可以判断这种直线应该有两条,另一条可能是斜率无穷大,不存在,无法从刚才的计算中得到,此直线应该是:y=o ( 右顶点(1,0)到Y抽距离等于1.)
看了 已知双曲线C的中心在坐标原点...的网友还看了以下:
如图,在一个坡角为15°的斜坡上,从点C测得旗杆顶端A的视线与斜坡面的夹角为45°在一个坡角为15° 2020-03-30 …
已知直线2x+3y+1=0,求过点(1,2),且倾斜角比已知直线倾斜角小45°的直线方程我的做法是 2020-04-08 …
某数学活动小组组织一次登山活动.他们从山脚下A点出发沿斜坡AB到达B点.再从B点沿斜坡BC到达山顶 2020-05-17 …
如图所示,一轻质弹簧的上端固定在倾角为30°的光滑斜面顶部,下端栓接小物块A,A通过一段细线与小物 2020-05-17 …
如图所示,质量均为m的两木块a与b叠放在水平面上,a受到斜上与水平成 θ角的力作用,b受到斜下与水 2020-05-17 …
一、直线L的倾斜角为60°,与X轴交与点(5,0),则L的方程是?二、直线3X-4Y+1=0和6X 2020-06-03 …
如图,高压电线杆AB垂直地面,测得电线杆AB的底部A到斜坡C的水平距离AC长为15.2米,落在斜坡 2020-06-22 …
已知椭圆x^2/a^2+y^2/b^2=1(a>0,b>0),过点A(a,0)B(b,0)的直线倾 2020-06-23 …
已知椭圆(a>b>0)过点A(a,0),B(0,b)的直线倾斜角为,原点到该直线的距离为.(1)求 2020-07-22 …
已知椭圆x2/a2+y2/b2=1(a>b>0),过点A(-a,0),B(0,b)的直线倾斜角为π 2020-08-01 …