早教吧作业答案频道 -->数学-->
A是3阶矩阵,α1,α2,α3,是3维线性无关的列向量,且Aα1=4α1-4α2+3α3,Aα2=-6α1-α2+α3,Aα3=0.求求A的特征向量?
题目详情
A是3阶矩阵,α1,α2,α3,是3维线性无关的列向量,且Aα1=4α1-4α2+3α3,Aα2=-6α1-α2+α3,Aα3=0.求
求A的特征向量?
求A的特征向量?
▼优质解答
答案和解析
又看到你这个题目 正好更正一下结论.
A(α1,α2,α3)=(α1,α2,α3)B
其中 B =
4 -6 0
-4 -1 0
3 1 0
记 P = (α1,α2,α3)
由 α1,α2,α3 线性无关,所以P可逆.
所以有 P^-1AP = B.
|B-λE| = λ[(4-λ)(-1-λ)-24] = λ(λ^2-3λ-28)
= λ(λ-7)(λ+4).
所以 B 的特征值为 0,7,-4.
故与B相似的矩阵A的特征值为 0,7,-4.
下面求B的特征向量.
BX=0 的基础解系为:a1=(0,0,1)'
(B-7E)X=0 的基础解系为:a2=(14,-7,5)'
(B+4E)X=0 的基础解系为:a3=(12,16,-13)'.
设λ是B的特征值,x是B的属于λ的特征向量,则 Bx=λx.
因为 P^-1AP = B,所以 P^-1APx = Bx = λx
所以 A(Px) = λ(Px).
即有:若x是B的属于特征值λ的特征向量,则Px是A的属于特征值λ的特征向量
所以,A的线性无关的特征向量为 ( 修改的这里)
b1 = Pa1=(α1,α2,α3)(0,0,1)' = α3.
b2 = Pa2=(α1,α2,α3)(14,-7,5)' = 14α1-7α2+5α3.
b3 = Pa3=(α1,α2,α3)(12,16,-13)' = 12α1+16α2-13α3
结论:
A的属于特征值0的特征向量为:k1b1,k1为任意非零常数.
A的属于特征值7的特征向量为:k1b2,k2为任意非零常数.
A的属于特征值-4的特征向量为:k1b3,k3为任意非零常数.
上次提交后发现问题,但你已采纳,无法修改,只好写在评论里了.
A(α1,α2,α3)=(α1,α2,α3)B
其中 B =
4 -6 0
-4 -1 0
3 1 0
记 P = (α1,α2,α3)
由 α1,α2,α3 线性无关,所以P可逆.
所以有 P^-1AP = B.
|B-λE| = λ[(4-λ)(-1-λ)-24] = λ(λ^2-3λ-28)
= λ(λ-7)(λ+4).
所以 B 的特征值为 0,7,-4.
故与B相似的矩阵A的特征值为 0,7,-4.
下面求B的特征向量.
BX=0 的基础解系为:a1=(0,0,1)'
(B-7E)X=0 的基础解系为:a2=(14,-7,5)'
(B+4E)X=0 的基础解系为:a3=(12,16,-13)'.
设λ是B的特征值,x是B的属于λ的特征向量,则 Bx=λx.
因为 P^-1AP = B,所以 P^-1APx = Bx = λx
所以 A(Px) = λ(Px).
即有:若x是B的属于特征值λ的特征向量,则Px是A的属于特征值λ的特征向量
所以,A的线性无关的特征向量为 ( 修改的这里)
b1 = Pa1=(α1,α2,α3)(0,0,1)' = α3.
b2 = Pa2=(α1,α2,α3)(14,-7,5)' = 14α1-7α2+5α3.
b3 = Pa3=(α1,α2,α3)(12,16,-13)' = 12α1+16α2-13α3
结论:
A的属于特征值0的特征向量为:k1b1,k1为任意非零常数.
A的属于特征值7的特征向量为:k1b2,k2为任意非零常数.
A的属于特征值-4的特征向量为:k1b3,k3为任意非零常数.
上次提交后发现问题,但你已采纳,无法修改,只好写在评论里了.
看了 A是3阶矩阵,α1,α2,α...的网友还看了以下:
探究题:(x-1)(x+1)=x^2-1(x-1)(x^2+x+1)=x^3-1探究题:(x-1)( 2020-03-30 …
1/1,-1/2,-2/1,1/3,2/2,1/3,-1/4,-2/3,-3/2,-4/1,1/5 2020-04-09 …
分式求和问题1/(2^k+1)+1/(2^k+2)+…+1/2^(k+1)为什么1/(2^k+1) 2020-04-26 …
S=(1+1/1*2+(2+1/2*3)+(3+1/3*4)+...+(20+1/20*21)S= 2020-04-27 …
1/2*101/100=101/200这一步是因为什么这么做的?原题是1-1/2^2)(1-1/3 2020-05-14 …
谁会用MATLAB计算 权向量矩阵是A=[1,1/2,3,1,6,8,9,1/2 2,1,5,2, 2020-05-15 …
设Tn=1/2^0+2/2+3/2^3+…+n/2^(n-1)(1)(1/2)*(1)得:(1/2 2020-06-02 …
在○里填上适当的运算符合,使等式成立(1)1/2○1/2○1/2○1/2○1/2=0(2)1/2○ 2020-07-08 …
必修I·指数函数部分化简[1+2^(1/8)][1+2^(1/4)][1+2^(1/2)]快+好者 2020-08-02 …
如果设y=x^2/1+x^2=f(x),并且(f)表示当x=1时,y的值,既f(1)=1^2/1^2 2021-02-05 …