早教吧作业答案频道 -->数学-->
证明方程组AX=0的任意n-r个线性无关的解向量都是它的一个基础解系.
题目详情
证明方程组AX=0的任意n-r个线性无关的解向量都是它的一个基础解系.
▼优质解答
答案和解析
反证.
若有n-r个线性无关的解向量 a1,...,an-r 不是AX=0 的基础解系
由基础解系的定义知 至少有一个解向量b 不能由 a1,...,an-r 线性表示
因此 a1,...,an-r,b 线性无关
这与 AX=0 的基础解系含n-r个向量矛盾.
若有n-r个线性无关的解向量 a1,...,an-r 不是AX=0 的基础解系
由基础解系的定义知 至少有一个解向量b 不能由 a1,...,an-r 线性表示
因此 a1,...,an-r,b 线性无关
这与 AX=0 的基础解系含n-r个向量矛盾.
看了 证明方程组AX=0的任意n-...的网友还看了以下:
一下matlab程序错在哪clear allclclamada=0.3;theta=0.7;m=0 2020-05-16 …
对于集合M包含R^2,称M为开集,当且仅当任意P0属于M,存在r>0,使得{P属于R^2||PP0 2020-07-09 …
1将参数方程x=1+2cosay=2sina化为普通方程,所得方程是?2集合M=((x,y)x^2 2020-07-09 …
1.设mΧn矩阵A的秩为R(A)=n-1,切x1,x2是齐次方程AX=0的两个不同的解,则AX=0 2020-07-12 …
若R(B)=n,则线性方程BX=0只有零解.从而对任意n维列向量X不等于0,有BX不等于0.这后半 2020-08-01 …
用公式法解方程:8000r^2-430r-3=0)我想要整个解题过程这个方程是有关于收入,所以答案 2020-08-02 …
初学者用matlab解二元二次方程组没有解,symsrx;[r,x]=solve('(r*(126 2020-08-03 …
求解二元二阶微分方程组m(r''-(θ')²r)=-k(r-R)θ'r²=ωr(0)²r(0)=kR 2020-11-26 …
已知函数f(x)的定义域R,对任意实数m,n都有f(m+n)=f(m)×f(n),且当x>0时.0< 2020-12-08 …
关于函数……已知函数y=f(x)的定义域为R,对任意x,∈R,均有f(x+x~)=f(x)+f(x~ 2020-12-31 …