早教吧作业答案频道 -->数学-->
(1)在足球比赛中,当守门员远离球门时,进攻队员常常使用“吊射”的战术(把球高高地挑过守门员的头顶射入球门).一位球员在离对方球门30米的M处起脚吊射,假如球飞行的路线是一
题目详情

32 |
3 |
(2)在(1)中,若守门员站在距球门2米远处,而守门员跳起后最多能摸到2.75米高处,他能否在空中截住这次吊射?
32 |
3 |
▼优质解答
答案和解析
(1)由题意可知,抛物线的顶点(14,
),
抛物线过点M(30,0),
设它的解析式为y=a(x-14)2+
,
把点M(30,0)代入y=a(x-14)2+
,
解得a=-
,
∴抛物线的解析式为y=-
(x-14)2+
,
令x=0,得y=
,即足球到达球门时的高度为
米,
>2.44,
∴球不会进入球门;
(2)y=-
(x-14)2+
,
令x=2,得y=
,
即球在离球门2米处得高度为
米,
>2.75,
∴守门员不能在空中截住这次吊射.
32 32 323 3 3),
抛物线过点M(30,0),
设它的解析式为y=a(x-14)22+
,
把点M(30,0)代入y=a(x-14)2+
,
解得a=-
,
∴抛物线的解析式为y=-
(x-14)2+
,
令x=0,得y=
,即足球到达球门时的高度为
米,
>2.44,
∴球不会进入球门;
(2)y=-
(x-14)2+
,
令x=2,得y=
,
即球在离球门2米处得高度为
米,
>2.75,
∴守门员不能在空中截住这次吊射.
32 32 323 3 3,
把点M(30,0)代入y=a(x-14)22+
,
解得a=-
,
∴抛物线的解析式为y=-
(x-14)2+
,
令x=0,得y=
,即足球到达球门时的高度为
米,
>2.44,
∴球不会进入球门;
(2)y=-
(x-14)2+
,
令x=2,得y=
,
即球在离球门2米处得高度为
米,
>2.75,
∴守门员不能在空中截住这次吊射.
32 32 323 3 3,
解得a=-
,
∴抛物线的解析式为y=-
(x-14)2+
,
令x=0,得y=
,即足球到达球门时的高度为
米,
>2.44,
∴球不会进入球门;
(2)y=-
(x-14)2+
,
令x=2,得y=
,
即球在离球门2米处得高度为
米,
>2.75,
∴守门员不能在空中截住这次吊射.
1 1 124 24 24,
∴抛物线的解析式为y=-
(x-14)2+
,
令x=0,得y=
,即足球到达球门时的高度为
米,
>2.44,
∴球不会进入球门;
(2)y=-
(x-14)2+
,
令x=2,得y=
,
即球在离球门2米处得高度为
米,
>2.75,
∴守门员不能在空中截住这次吊射.
1 1 124 24 24(x-14)22+
,
令x=0,得y=
,即足球到达球门时的高度为
米,
>2.44,
∴球不会进入球门;
(2)y=-
(x-14)2+
,
令x=2,得y=
,
即球在离球门2米处得高度为
米,
>2.75,
∴守门员不能在空中截住这次吊射.
32 32 323 3 3,
令x=0,得y=
,即足球到达球门时的高度为
米,
>2.44,
∴球不会进入球门;
(2)y=-
(x-14)2+
,
令x=2,得y=
,
即球在离球门2米处得高度为
米,
>2.75,
∴守门员不能在空中截住这次吊射.
5 5 52 2 2,即足球到达球门时的高度为
米,
>2.44,
∴球不会进入球门;
(2)y=-
(x-14)2+
,
令x=2,得y=
,
即球在离球门2米处得高度为
米,
>2.75,
∴守门员不能在空中截住这次吊射.
5 5 52 2 2米,
>2.44,
∴球不会进入球门;
(2)y=-
(x-14)2+
,
令x=2,得y=
,
即球在离球门2米处得高度为
米,
>2.75,
∴守门员不能在空中截住这次吊射.
5 5 52 2 2>2.44,
∴球不会进入球门;
(2)y=-
(x-14)2+
,
令x=2,得y=
,
即球在离球门2米处得高度为
米,
>2.75,
∴守门员不能在空中截住这次吊射.
1 1 124 24 24(x-14)22+
,
令x=2,得y=
,
即球在离球门2米处得高度为
米,
>2.75,
∴守门员不能在空中截住这次吊射.
32 32 323 3 3,
令x=2,得y=
,
即球在离球门2米处得高度为
米,
>2.75,
∴守门员不能在空中截住这次吊射.
14 14 143 3 3,
即球在离球门2米处得高度为
米,
>2.75,
∴守门员不能在空中截住这次吊射.
14 14 143 3 3米,
>2.75,
∴守门员不能在空中截住这次吊射.
14 14 143 3 3>2.75,
∴守门员不能在空中截住这次吊射.
32 |
3 |
抛物线过点M(30,0),
设它的解析式为y=a(x-14)2+
32 |
3 |
把点M(30,0)代入y=a(x-14)2+
32 |
3 |
解得a=-
1 |
24 |
∴抛物线的解析式为y=-
1 |
24 |
32 |
3 |
令x=0,得y=
5 |
2 |
5 |
2 |
5 |
2 |
∴球不会进入球门;
(2)y=-
1 |
24 |
32 |
3 |
令x=2,得y=
14 |
3 |
即球在离球门2米处得高度为
14 |
3 |
14 |
3 |
∴守门员不能在空中截住这次吊射.
32 |
3 |
抛物线过点M(30,0),
设它的解析式为y=a(x-14)22+
32 |
3 |
把点M(30,0)代入y=a(x-14)2+
32 |
3 |
解得a=-
1 |
24 |
∴抛物线的解析式为y=-
1 |
24 |
32 |
3 |
令x=0,得y=
5 |
2 |
5 |
2 |
5 |
2 |
∴球不会进入球门;
(2)y=-
1 |
24 |
32 |
3 |
令x=2,得y=
14 |
3 |
即球在离球门2米处得高度为
14 |
3 |
14 |
3 |
∴守门员不能在空中截住这次吊射.
32 |
3 |
把点M(30,0)代入y=a(x-14)22+
32 |
3 |
解得a=-
1 |
24 |
∴抛物线的解析式为y=-
1 |
24 |
32 |
3 |
令x=0,得y=
5 |
2 |
5 |
2 |
5 |
2 |
∴球不会进入球门;
(2)y=-
1 |
24 |
32 |
3 |
令x=2,得y=
14 |
3 |
即球在离球门2米处得高度为
14 |
3 |
14 |
3 |
∴守门员不能在空中截住这次吊射.
32 |
3 |
解得a=-
1 |
24 |
∴抛物线的解析式为y=-
1 |
24 |
32 |
3 |
令x=0,得y=
5 |
2 |
5 |
2 |
5 |
2 |
∴球不会进入球门;
(2)y=-
1 |
24 |
32 |
3 |
令x=2,得y=
14 |
3 |
即球在离球门2米处得高度为
14 |
3 |
14 |
3 |
∴守门员不能在空中截住这次吊射.
1 |
24 |
∴抛物线的解析式为y=-
1 |
24 |
32 |
3 |
令x=0,得y=
5 |
2 |
5 |
2 |
5 |
2 |
∴球不会进入球门;
(2)y=-
1 |
24 |
32 |
3 |
令x=2,得y=
14 |
3 |
即球在离球门2米处得高度为
14 |
3 |
14 |
3 |
∴守门员不能在空中截住这次吊射.
1 |
24 |
32 |
3 |
令x=0,得y=
5 |
2 |
5 |
2 |
5 |
2 |
∴球不会进入球门;
(2)y=-
1 |
24 |
32 |
3 |
令x=2,得y=
14 |
3 |
即球在离球门2米处得高度为
14 |
3 |
14 |
3 |
∴守门员不能在空中截住这次吊射.
32 |
3 |
令x=0,得y=
5 |
2 |
5 |
2 |
5 |
2 |
∴球不会进入球门;
(2)y=-
1 |
24 |
32 |
3 |
令x=2,得y=
14 |
3 |
即球在离球门2米处得高度为
14 |
3 |
14 |
3 |
∴守门员不能在空中截住这次吊射.
5 |
2 |
5 |
2 |
5 |
2 |
∴球不会进入球门;
(2)y=-
1 |
24 |
32 |
3 |
令x=2,得y=
14 |
3 |
即球在离球门2米处得高度为
14 |
3 |
14 |
3 |
∴守门员不能在空中截住这次吊射.
5 |
2 |
5 |
2 |
∴球不会进入球门;
(2)y=-
1 |
24 |
32 |
3 |
令x=2,得y=
14 |
3 |
即球在离球门2米处得高度为
14 |
3 |
14 |
3 |
∴守门员不能在空中截住这次吊射.
5 |
2 |
∴球不会进入球门;
(2)y=-
1 |
24 |
32 |
3 |
令x=2,得y=
14 |
3 |
即球在离球门2米处得高度为
14 |
3 |
14 |
3 |
∴守门员不能在空中截住这次吊射.
1 |
24 |
32 |
3 |
令x=2,得y=
14 |
3 |
即球在离球门2米处得高度为
14 |
3 |
14 |
3 |
∴守门员不能在空中截住这次吊射.
32 |
3 |
令x=2,得y=
14 |
3 |
即球在离球门2米处得高度为
14 |
3 |
14 |
3 |
∴守门员不能在空中截住这次吊射.
14 |
3 |
即球在离球门2米处得高度为
14 |
3 |
14 |
3 |
∴守门员不能在空中截住这次吊射.
14 |
3 |
14 |
3 |
∴守门员不能在空中截住这次吊射.
14 |
3 |
∴守门员不能在空中截住这次吊射.
看了(1)在足球比赛中,当守门员远...的网友还看了以下:
1.用DIS实验系统的光电门传感器测得旋转半径为0.64m的家用吊扇叶片边缘的速度为16m/s,则 2020-04-26 …
塔吊是建筑工地上普遍使用的起重的设备,AB是竖直支架,CD是水平臂,其上OC叫平衡臂,C端装有配重 2020-05-13 …
人体内静脉血的压强大约比大气压高120,动脉血的压强大约比大气压高12,所以打吊瓶时将针头插入静脉 2020-05-13 …
某物体做匀加速直线运动8s末速度为9m/s,前2s内位移为4m (1)3秒末的速度 (2)3秒末的 2020-05-17 …
比较简单的高中物理题建筑工人在处理楼房的墙时常用吊篮吧自己吊起,如图所示.若吊篮的质量为20千克, 2020-06-06 …
如图是一种能夹着重物起吊的钳子的示意图,其中AOB和COD为构成钳子的两个杠杆,O为转轴,a、b为 2020-06-30 …
“塔吊”是建筑工地上普遍使用的起重设备.如如所示的“塔吊”用到的简单机械有:,用此“塔吊”将图.8t 2020-11-01 …
(2013•泰州)工人站在地面上,用定滑轮将27kg的物品吊运到10m高处,使用定滑轮的优点是.若不 2020-11-12 …
关于模拟失重为什么"吊尾"就能模拟失重?吊尾就是把尾巴掉起来(比如说用老鼠作实验的时候),有篇实验报 2020-12-02 …
货运码头上的起重机将集装箱吊起时,常采用如图所示的吊绳方式.拉绳长OA=OB,绳OC竖直向上.三条绳 2020-12-15 …