早教吧作业答案频道 -->数学-->
关于椭圆的,问几道关于椭圆的高二数学题.1.已知F1、F2是椭圆x^2/100+y^2/64=1的两焦点,P是椭圆上任一点,若∠F1PF2=π/3,求三角形F1PF2的面积.2.设x、y∈R,i、j分别为直角坐标平面内x轴、y轴正方向上
题目详情
关于椭圆的,
问几道关于椭圆的高二数学题.
1.已知F1、F2是椭圆x^2/100+y^2/64=1的两焦点,P是椭圆上任一点,若∠F1PF2=π/3,求三角形F1PF2的面积.
2.设x、y∈R,i、j分别为直角坐标平面内x轴、y轴正方向上的单位向量,a=xi+(y+2)j,b=xi+(y-2)j,且|a|+|b|=8.
(1)求点M(x,y)的轨迹方程.
(2)过点(0,3)作直线l与曲线C(为(1)问中点M的轨迹)交于A、B两点,设向量OP=向量OA+向量OB,是否存在这样的直线l使得四边形OAPB是矩形?若存在,求l方程;若不存在,说明理由.
问几道关于椭圆的高二数学题.
1.已知F1、F2是椭圆x^2/100+y^2/64=1的两焦点,P是椭圆上任一点,若∠F1PF2=π/3,求三角形F1PF2的面积.
2.设x、y∈R,i、j分别为直角坐标平面内x轴、y轴正方向上的单位向量,a=xi+(y+2)j,b=xi+(y-2)j,且|a|+|b|=8.
(1)求点M(x,y)的轨迹方程.
(2)过点(0,3)作直线l与曲线C(为(1)问中点M的轨迹)交于A、B两点,设向量OP=向量OA+向量OB,是否存在这样的直线l使得四边形OAPB是矩形?若存在,求l方程;若不存在,说明理由.
▼优质解答
答案和解析
设F1P=m,PF2 = n
n+m=2a=20
(F1F2)^2=(2c)^2=144 = n^2+m^2-2mncos60 解出n= ,m=?
S = (n*m*sin60)/2 =...
2.主要是概念,|a| = 根号[x^2+(y+2)^2]
可以理解成点(x,y)到点(0,-2)的距离.
|a|+|b|=8.也就是到点(0,-2)和(0,2)距离和为8的点.
即焦点在y轴,a = 4 ,c=2 .椭圆.
.
n+m=2a=20
(F1F2)^2=(2c)^2=144 = n^2+m^2-2mncos60 解出n= ,m=?
S = (n*m*sin60)/2 =...
2.主要是概念,|a| = 根号[x^2+(y+2)^2]
可以理解成点(x,y)到点(0,-2)的距离.
|a|+|b|=8.也就是到点(0,-2)和(0,2)距离和为8的点.
即焦点在y轴,a = 4 ,c=2 .椭圆.
.
看了 关于椭圆的,问几道关于椭圆的...的网友还看了以下:
函数定义域求解答.1.已知f(x)的定义域为{0.2}求函数f(2x-1)的定义域.2.已知f(2 2020-05-17 …
已知一次函数f(x)=x+8-2n(1)设函数y=f(x)的图像与y轴交点的纵坐标构成数an,求证 2020-06-21 …
已知函数y=f(x)的定义域为[0,1],则函数f(x+a)的定义域为?原因.设f(x)=2x+3 2020-07-19 …
1.x^2+sinx的一个原函数是2.设是F1(x),F2(x)是f(x)的两个同的原函数,且f( 2020-07-28 …
已知幂函数f(x)=x^(-P^2/2+p+3/2)(p∈z),在(0,正无穷)上是增函数,且在其 2020-08-01 …
设f(x)是定义在(0,∞)上的增函数,f(2)=1,f(xy)=f(x)+f(y),设f(x)是 2020-08-01 …
设Sn为数列{an}的前n项和,对任意的n属于N*都有Sn=(m+1)-man(m为常数且m大于0 2020-08-01 …
设Sn为数列{an}的前n项和,对任意的n属于N*都有Sn=(m+1)-man(m为常数且m大于0 2020-08-01 …
复合函数导数设函数f(x)=x^2,则导数f"(2-x)等于导数[f(2-x)]"吗那个是导数不是 2020-08-02 …
求教几个高数问题1.求下列函数的一阶偏导数(其中f具有一阶连续偏导数)①u=f(x^2-y^2,e^ 2020-11-01 …