早教吧作业答案频道 -->数学-->
关于椭圆的,问几道关于椭圆的高二数学题.1.已知F1、F2是椭圆x^2/100+y^2/64=1的两焦点,P是椭圆上任一点,若∠F1PF2=π/3,求三角形F1PF2的面积.2.设x、y∈R,i、j分别为直角坐标平面内x轴、y轴正方向上
题目详情
关于椭圆的,
问几道关于椭圆的高二数学题.
1.已知F1、F2是椭圆x^2/100+y^2/64=1的两焦点,P是椭圆上任一点,若∠F1PF2=π/3,求三角形F1PF2的面积.
2.设x、y∈R,i、j分别为直角坐标平面内x轴、y轴正方向上的单位向量,a=xi+(y+2)j,b=xi+(y-2)j,且|a|+|b|=8.
(1)求点M(x,y)的轨迹方程.
(2)过点(0,3)作直线l与曲线C(为(1)问中点M的轨迹)交于A、B两点,设向量OP=向量OA+向量OB,是否存在这样的直线l使得四边形OAPB是矩形?若存在,求l方程;若不存在,说明理由.
问几道关于椭圆的高二数学题.
1.已知F1、F2是椭圆x^2/100+y^2/64=1的两焦点,P是椭圆上任一点,若∠F1PF2=π/3,求三角形F1PF2的面积.
2.设x、y∈R,i、j分别为直角坐标平面内x轴、y轴正方向上的单位向量,a=xi+(y+2)j,b=xi+(y-2)j,且|a|+|b|=8.
(1)求点M(x,y)的轨迹方程.
(2)过点(0,3)作直线l与曲线C(为(1)问中点M的轨迹)交于A、B两点,设向量OP=向量OA+向量OB,是否存在这样的直线l使得四边形OAPB是矩形?若存在,求l方程;若不存在,说明理由.
▼优质解答
答案和解析
设F1P=m,PF2 = n
n+m=2a=20
(F1F2)^2=(2c)^2=144 = n^2+m^2-2mncos60 解出n= ,m=?
S = (n*m*sin60)/2 =...
2.主要是概念,|a| = 根号[x^2+(y+2)^2]
可以理解成点(x,y)到点(0,-2)的距离.
|a|+|b|=8.也就是到点(0,-2)和(0,2)距离和为8的点.
即焦点在y轴,a = 4 ,c=2 .椭圆.
.
n+m=2a=20
(F1F2)^2=(2c)^2=144 = n^2+m^2-2mncos60 解出n= ,m=?
S = (n*m*sin60)/2 =...
2.主要是概念,|a| = 根号[x^2+(y+2)^2]
可以理解成点(x,y)到点(0,-2)的距离.
|a|+|b|=8.也就是到点(0,-2)和(0,2)距离和为8的点.
即焦点在y轴,a = 4 ,c=2 .椭圆.
.
看了 关于椭圆的,问几道关于椭圆的...的网友还看了以下:
关于直线和圆的数学题求解麻烦吧计算过程写下来注(x,y后的数为平方)(1)将圆x2+y2=1沿x轴正 2020-03-30 …
求圆关于直线对称的圆的方法.已知圆的标准方程(x-3)^2+(y+1)^2=10,直线y=1/2x, 2020-03-30 …
关于椭圆方程的题.哪位大神可以做出来?急!已知椭圆C的中心在原点,长轴在x轴上,经过点A(0,1), 2020-03-31 …
急!椭圆相关习题1焦点在X轴上,且经过点A(2,0)和B(0,1),求椭圆标准方程(过程我会,可是 2020-05-23 …
1.椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)两个焦点为F1、F2,点P在椭圆C上, 2020-06-03 …
已知圆C的方程为x^2+(y+1)^2=4,直线l的方程为x-y+1=01.求与圆c关于直线l对称 2020-07-09 …
关于圆·★已知圆C过P(1,1),且与圆(X+3)平方+(Y+3)平方=R平方关于直线X+Y+3= 2020-07-22 …
求圆关于点对称的题目,有一步骤没看懂求圆x^2+y^2-x+2y=0关于点0(1,2)对称的圆方程 2020-07-26 …
已知圆心为(3,4)的圆N被直线x=1截得的弦长为25.(1)求圆N的方程;(2)点B(3,-2) 2020-07-26 …
求与圆C:x^2+y^2-x+2y=0关于直线l:x-y+1=0对称的圆的方程2011-02-求与圆 2020-12-26 …