早教吧作业答案频道 -->数学-->
正方体ABCD-A1BAC1D1的棱长为1,P是AD的中点,求二面角A-BD1-P的大小
题目详情
正方体ABCD-A1BAC1D1的棱长为1,P是AD的中点,求二面角A-BD1-P的大小
▼优质解答
答案和解析
连接AD1;BD1;B1D1;PD1;取BD1中点E;在面ABD1上过E做EF⊥DB1交AD1于F;连接PF;EF;PE;
勾股定理
BP=D1P=√5/2;
AD1=B1D1=√2;
BD1=√3;
∵BP=D1P=√5/2;BE=D1E;
∴PE⊥BD1;∵EF⊥DB1;
∴∠FEP就是二面角A-BD1-P;
在△ABD1中;
BD1^2=3;
AB^2=1;
AD1^2=2;
BD1^2=AD1^2+AB^2;
△ABD1为直角三角形;∠BAD1=90°;
∴△ABD1∽△EFD1;
根据比例性质,求得:
EF=√6/4;
AF=√2/4;
△APF中;AP=1/2;AF=√2/4;∠PAF=45°;∴PF=AF=√2/4;
PE=√2/2;
PF^2+EF^2=PE^2;
△PEF是直角三角形;
PF=1/2PE;
∴∠PEF=30°;
二面角A-BD1-P的大小为30°
勾股定理
BP=D1P=√5/2;
AD1=B1D1=√2;
BD1=√3;
∵BP=D1P=√5/2;BE=D1E;
∴PE⊥BD1;∵EF⊥DB1;
∴∠FEP就是二面角A-BD1-P;
在△ABD1中;
BD1^2=3;
AB^2=1;
AD1^2=2;
BD1^2=AD1^2+AB^2;
△ABD1为直角三角形;∠BAD1=90°;
∴△ABD1∽△EFD1;
根据比例性质,求得:
EF=√6/4;
AF=√2/4;
△APF中;AP=1/2;AF=√2/4;∠PAF=45°;∴PF=AF=√2/4;
PE=√2/2;
PF^2+EF^2=PE^2;
△PEF是直角三角形;
PF=1/2PE;
∴∠PEF=30°;
二面角A-BD1-P的大小为30°
看了 正方体ABCD-A1BAC1...的网友还看了以下:
1.如果a≠0,p是正整数,那么下列各式中错误的是:()A.a^-p=1/a^pB.a^-p=(1/ 2020-03-30 …
已知集合A={x|x2-2x-15≤0},B=(2,11],C=[p+1,2p-1],C≠∅.(1 2020-05-13 …
求三角形内切圆半径的公式r=[(p-a)(p-b)(p-c)/p]^(1/2),a、b、c为三角形 2020-05-20 …
1.r,h,n,y,e2.c,e,s,c,n,i,e3.p,1,a,p,e4.r,a,t5.p,o 2020-07-09 …
谁能帮我证明海轮公式一个三角形,三边长a,b,c,p=1/2*(a+b+c),求三角形面积?面积s 2020-07-15 …
概率论,对于任意A,B,下面结论正确的是对于任意A,B,下面结论正确的是()A.若P(AB)=0, 2020-07-30 …
(*p)[3]在里面是什么意思,另外定义一个数组吗*题9.66C若有以下定义和语句,则对a数组元素 2020-08-03 …
在平面直角坐标系中,设三角形ABC的顶点分别为A(0,a)B(b,0)C(c,0),点P(0,p)在 2020-12-01 …
.单选题:若有以下说明和语句,C语言intc[4][5],(*p)[5];p=c;能正确引用c数组元 2020-12-13 …
假设事件A和B满足P(BIA)=1则:a:A包含于Bb;A是必然事件c:P(A-B)=0是不是a和c 2021-01-01 …