早教吧 育儿知识 作业答案 考试题库 百科 知识分享

解方程x/1×2+x/2×3+x/3×4+…+x/2009×2010=2009

题目详情
解方程x/1×2+x/2×3+x/3×4+…+x/2009×2010=2009
▼优质解答
答案和解析
1×2分之1+2×3分之1+3×4分之1,试算这简单的分数寻找规律,第一个=2分之1,第二个=6分之1=2分之1减去3分之1,第三个=12分之1=3分之1减去4分之1,这样发现,第一个是1-2分之1,第n个是n分之1减去(n-1)分之1,所以原式的方程左面可以写成
x(1-2分之1+2分之1-3分之1+3分之1-4分之1+.+2009分之1-2010分之1),观察中间,-2分之1+2分之1可以抵消,-3分之1+3分之1可以抵消,依此类推,括号里剩下的是(1-2010分之1)
所以方程左面最后为x*(2010分之2009)
方程此时为:x*(2010分之2009)=2009
x=2009乘2009分之2010
x=2010