早教吧作业答案频道 -->数学-->
已知等差数列(an)的前n项和为sn=n^2+pn+q(p,q∈r),且a2,a3 ,a5成等比数列(1)求p,q的值(2)若数列bn满足an+log2n=log2bn,求数列bn的前n项和Tn
题目详情
已知等差数列(an)的前n项和为sn=n^2+pn+q(p,q∈r),且a2,a3 ,a5成等比数列(1)求p,q的值(2)若数列bn满足an+log2n=log2bn,求数列bn的前n项和Tn
▼优质解答
答案和解析
(1)
Sn = n^2+pn+q
n=1 , a1= p+q+1
an = Sn - S(n-1)
= 2n-1 + p (1)
a1= 1+p = p+q+1
=>q=0
from (1)
a2 = 3+p
a3 =5+p
a5 = 9+p
a2,a3 ,a5成等比数列
a2.a5 = (a3)^2
(3+p)(9+p)=(5+p)^2
12p+27 = 10p+25
p=-1
(2)
an = 2n-2
an+logn=logbn
2n-2 = log(bn/n)
bn/n = 2^(2n-2)
bn = n.2^(2n-2)
let
S = 1.2^0 + 2.2^2 + .+n.2^(2n-2) (2)
4S = 1.2^2 + 2.2^4 + .+n.2^(2n) (3)
(3)-(2)
3S = n.2^(2n) - [ 1 + 2^2+2^4+...+2^(2n-2) ]
= n.2^(2n) - (1/3)(2^(2n) -1)
S = 3n.2^(2n) - (2^(2n) -1)
= 1 + (3n-1).2^(2n)
Tn = b1+b2+...+bn=S =1 + (3n-1).2^(2n)
Sn = n^2+pn+q
n=1 , a1= p+q+1
an = Sn - S(n-1)
= 2n-1 + p (1)
a1= 1+p = p+q+1
=>q=0
from (1)
a2 = 3+p
a3 =5+p
a5 = 9+p
a2,a3 ,a5成等比数列
a2.a5 = (a3)^2
(3+p)(9+p)=(5+p)^2
12p+27 = 10p+25
p=-1
(2)
an = 2n-2
an+logn=logbn
2n-2 = log(bn/n)
bn/n = 2^(2n-2)
bn = n.2^(2n-2)
let
S = 1.2^0 + 2.2^2 + .+n.2^(2n-2) (2)
4S = 1.2^2 + 2.2^4 + .+n.2^(2n) (3)
(3)-(2)
3S = n.2^(2n) - [ 1 + 2^2+2^4+...+2^(2n-2) ]
= n.2^(2n) - (1/3)(2^(2n) -1)
S = 3n.2^(2n) - (2^(2n) -1)
= 1 + (3n-1).2^(2n)
Tn = b1+b2+...+bn=S =1 + (3n-1).2^(2n)
看了 已知等差数列(an)的前n项...的网友还看了以下:
等比列数公式的问题!S=a1(1-qn)/(1-q)S=a1(1-q^n)/(1-q)中S和a1和 2020-04-27 …
如图,线段上四个点表示的数分别为p、q、r、s,若|p-r|=10,|p-s|=12,|q-s|= 2020-05-13 …
已知等差数列(an)的前n项和为sn=n^2+pn+q(p,q∈r),且a2,a3 ,a5成等比数 2020-05-16 …
(¬(p→(((¬q)∧r))∨((¬p∨r)∧(q∧s))))(¬(p→(((¬q)∧r))∨( 2020-06-06 …
构造下面推论的证明:(1)前提:p→q结论:p→(p∧q)(2)前提:q→p,q→←s,s→←t, 2020-06-29 …
为什么要用这个减法S(n)-q*S(n)?是为了求什么因为x^n这是一个等比数列,首项为x,公比也 2020-07-11 …
p、q、r、s在数轴上的位置如图所示,若|r-p|=7,|p-s|=12,|q-s|=9,则|q- 2020-07-21 …
如图表示数轴上四个点的位置关系,且它们表示的数分别为p,q,r,s.若|p-r|=10,|p-s| 2020-07-30 …
离散数学中环算几条边K4有几边几面构造下面推理证明(1)前提:┑(p∧q),┑q∧r,┑r结论:┑ 2020-07-30 …
p、q、r、s在数轴上的位置如图所示,若|p-r|=10,|p-s|=12,|q-s|=9,则|q- 2020-11-20 …