早教吧作业答案频道 -->数学-->
(1)(1+x)/(1+x^4)的不定积分(2)1/(x^3+x^5)的不定积分.
题目详情
(1)(1+x)/(1+x^4)的不定积分(2)1/(x^3+x^5)的不定积分.
▼优质解答
答案和解析
(1)
∫ (1 + x)/(1 + x⁴) dx
= ∫ 1/(1 + x⁴) dx + ∫ x/(1 + x⁴) dx
= (1/2)∫ [(x² + 1) - (x² - 1)]/(x⁴ + 1) dx + (1/2)∫ 1/(x⁴ + 1) d(x²)
= (1/2)∫ (x² + 1)/(x⁴ + 1) dx - (1/2)∫ (x² - 1)/(x⁴ + 1) dx + (1/2)∫ 1/[(x²)² + 1] d(x²)
= (1/2)∫ (1 + 1/x²)/(x² + 1/x²) dx - (1/2)∫ (1 - 1/x²)/(x² + 1/x²) dx + (1/2)arctan(x²)
= (1/2)∫ d(x - 1/x)/[(x - 1/x)² + 2] - (1/2)∫ d(x + 1/x)/[(x + 1/x)² - 2] + (1/2)arctan(x²)
= (1/2)(1/√2)arctan[(x - 1/x)/√2] - (1/2)[1/(2√2)]ln|[(x + 1/x) - √2]/[(x + 1/x) + √2]| + (1/2)arctan(x²) + C
= [1/(2√2)]arctan[x/√2 - 1/(√2x)] - [1/(4√2)]ln|(x² - √2x + 1)/(x² + √2x + 1)| + (1/2)arctan(x²) + C
(2)
∫ 1/(x³ + x⁵) dx
= ∫ 1/[x³(x² + 1)] dx
= ∫ [(x² + 1) - x²]/[x³(x² + 1)] dx
= ∫ 1/x³ dx - ∫ [(x² + 1) - x²]/[x(x² + 1)] dx
= - 1/(2x²) - ∫ 1/x dx + ∫ x/(x² + 1) dx
= - 1/(2x²) - ln|x| + (1/2)ln(x² + 1) + C
∫ (1 + x)/(1 + x⁴) dx
= ∫ 1/(1 + x⁴) dx + ∫ x/(1 + x⁴) dx
= (1/2)∫ [(x² + 1) - (x² - 1)]/(x⁴ + 1) dx + (1/2)∫ 1/(x⁴ + 1) d(x²)
= (1/2)∫ (x² + 1)/(x⁴ + 1) dx - (1/2)∫ (x² - 1)/(x⁴ + 1) dx + (1/2)∫ 1/[(x²)² + 1] d(x²)
= (1/2)∫ (1 + 1/x²)/(x² + 1/x²) dx - (1/2)∫ (1 - 1/x²)/(x² + 1/x²) dx + (1/2)arctan(x²)
= (1/2)∫ d(x - 1/x)/[(x - 1/x)² + 2] - (1/2)∫ d(x + 1/x)/[(x + 1/x)² - 2] + (1/2)arctan(x²)
= (1/2)(1/√2)arctan[(x - 1/x)/√2] - (1/2)[1/(2√2)]ln|[(x + 1/x) - √2]/[(x + 1/x) + √2]| + (1/2)arctan(x²) + C
= [1/(2√2)]arctan[x/√2 - 1/(√2x)] - [1/(4√2)]ln|(x² - √2x + 1)/(x² + √2x + 1)| + (1/2)arctan(x²) + C
(2)
∫ 1/(x³ + x⁵) dx
= ∫ 1/[x³(x² + 1)] dx
= ∫ [(x² + 1) - x²]/[x³(x² + 1)] dx
= ∫ 1/x³ dx - ∫ [(x² + 1) - x²]/[x(x² + 1)] dx
= - 1/(2x²) - ∫ 1/x dx + ∫ x/(x² + 1) dx
= - 1/(2x²) - ln|x| + (1/2)ln(x² + 1) + C
看了 (1)(1+x)/(1+x^...的网友还看了以下:
高数:若f(x),g(x)在[a,b]区间连续,F(x)=[a,x定积分区间]g(x)d(x)*[ 2020-06-07 …
高数:若f(x)在[a,b]区间连续,F(x)=[a,x定积分区间]f(x)d(x)+[b,x定积 2020-06-07 …
为什么每一个函数的原函数都常表示为0到x的对f(x)的定积分,从1到x对f(x)定积分不也是原函数 2020-06-12 …
求由2到5的定积分∫1/1+√x-1dx, 2020-06-22 …
定积分上下域为相反数,后面的f(x)需满足什么条件结果才为0啊?形式如下∫(-x,x)f(x)定积 2020-06-25 …
设f(x)=定积分(ln(1+t)/t)dt(x>0),上限x,下限1,求f(x)+f(1/x)设 2020-07-09 …
设f(x)=定积分(x到兀/2)sint/tdt,求定积分(0到兀/2)xf(x)dx 2020-07-13 …
∫(1/x^2+4x+5)dx定积分范围是上面-3下面-1 2020-07-20 …
求一个自然对数的积分ln[(1+x)/(1-x)]的-0.5到0.5的定积分是什么?请写完整过程 2020-08-02 …
高数定积分证明题y(x)在[a,b]上连续,在(a,b)上可导,证明:y(x)=定积分(上限u(x 2020-08-03 …