早教吧作业答案频道 -->数学-->
设f(x)=定积分(ln(1+t)/t)dt(x>0),上限x,下限1,求f(x)+f(1/x)设f(x)=∫[1,x]ln(1+t)/tdt令u=1/t=∫[1,1/x]uln(1+1/u)d1/u=∫[1,1/x]-[ln(1+u)-lnu]/udu=∫[1,1/x]-ln(1+u)/udu+∫[1,1/x]lnu/udu=-f(1/x)+∫[1,1/x]lnu/udu=-f(1/x)
题目详情
设f(x)=定积分(ln(1+t)/t)dt(x>0),上限x,下限1,求f(x)+f(1/x)
设 f(x)=∫[1,x] ln(1+t)/t dt 令u=1/t
=∫[1,1/x] uln(1+1/u) d1/u
=∫[1,1/x] -[ln(1+u)-lnu] / udu
=∫[1,1/x] -ln(1+u) / udu+ ∫[1,1/x] lnu / udu
=-f(1/x)+∫[1,1/x] lnu / udu
=-f(1/x)+∫[1,1/x] lnu dlnu
=-f(1/x)+(lnu)^2/2 | [1,1/x]
=-f(1/x)+(ln1/x)^2/2
∴f(x)+f(1/x)=(ln1/x)^2/2
最后一步为什么直接是f(x)+f(1/x) 刚开始的时候不是f(x)=.为什么从第二行开始代1/x
设 f(x)=∫[1,x] ln(1+t)/t dt 令u=1/t
=∫[1,1/x] uln(1+1/u) d1/u
=∫[1,1/x] -[ln(1+u)-lnu] / udu
=∫[1,1/x] -ln(1+u) / udu+ ∫[1,1/x] lnu / udu
=-f(1/x)+∫[1,1/x] lnu / udu
=-f(1/x)+∫[1,1/x] lnu dlnu
=-f(1/x)+(lnu)^2/2 | [1,1/x]
=-f(1/x)+(ln1/x)^2/2
∴f(x)+f(1/x)=(ln1/x)^2/2
最后一步为什么直接是f(x)+f(1/x) 刚开始的时候不是f(x)=.为什么从第二行开始代1/x
▼优质解答
答案和解析
这是方程的变化.
第一步和最后一步建立关系即为:
f(x)=-f(1/x)+(ln1/x)^2/2
把等号后面的-f(1/x)移到等号的左边,即得到:
f(x)+f(1/x)=(ln1/x)^2/2.
第一步和最后一步建立关系即为:
f(x)=-f(1/x)+(ln1/x)^2/2
把等号后面的-f(1/x)移到等号的左边,即得到:
f(x)+f(1/x)=(ln1/x)^2/2.
看了 设f(x)=定积分(ln(1...的网友还看了以下:
1/2{1/2[1/2(1/2y-3)-3]-3}=17x-1/0.024=1-0.2x/0.08 2020-04-27 …
(1)1/1*2+1/2*3+.+1/2009*2010(2)1/2*4+1/4*6+.+1/20 2020-05-17 …
设f(x)=定积分(ln(1+t)/t)dt(x>0),上限x,下限1,求f(x)+f(1/x)设 2020-07-09 …
(1/2+1/3+1/4+...1/2013)X(1+1/2+1/3+1/4+...1/2012) 2020-07-14 …
一道关于极限的高数题设x(n+1)=ln(1+xn),x1>0第一个问题:求lim(n趋于正无穷) 2020-07-30 …
设R^3中的一组基ξ1=(1,-2,1)T,ξ2=(0,1,1)T,ξ3=(3,2,1)T,向量α在 2020-11-02 …
初一一道数学找规律的题急用1.将1,-1/2,1/3,-1/4,1/5,-1/6,.按一定的规律排列 2020-11-03 …
求一道预备班数学期中考试的答案小明在做题时发现了一个规律:1*2/1=1-2/1,2*3/1=2/1 2020-11-05 …
观察下列等式①1/√2+1=√2-1/(√2+1)(√2-1)=-1+√2②1/√3+√2=√3-√ 2020-12-07 …
高中数学抽象函数已知定义在(-1,1)上的函数f(x)满足f(1/2)=1,且对任意x,y∈(-1, 2020-12-08 …