早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知三角形ABC,a^2+b^2=c^2+ab,sinA*sinB=3/4,求三角形的形状

题目详情
▼优质解答
答案和解析
a^2+b^2=c^2+ab 由余弦定理a^2+b^2-c^2=2ab*cosC
所以cosC=1/2 所以C=π/3
sinA*sinB
= (-1/2)[cos(A+B)-cos(A-B)]
= (-1/2)[cos(π-C)-cos(A-B)]
= (-1/2)[-cosC-cos(A-B)]
= (1/2)[(1/2)+cos(A-B)]
= 3/4
解得 cos(A-B)=1
因为 0