早教吧作业答案频道 -->其他-->
给出以下命题:(1)若∫baf(x)dx>0,则f(x)>0;(2)∫2π0|sinx|dx=4;(3)应用微积分基本定理,有∫211xdx=F(2)−F(1),则F(x)=lnx;(4)f(x)的原函数为F(x),且F(x)是以T为周期
题目详情
给出以下命题:
(1)若
f(x)dx>0,则f(x)>0;
(2)
|sinx|dx=4;
(3)应用微积分基本定理,有
dx=F(2)−F(1),则F(x)=lnx;
(4)f(x)的原函数为F(x),且F(x)是以T为周期的函数,则
f(x)dx=
f(x)dx;
其中正确命题的个数为( )
A.1
B.2
C.3
D.4
(1)若
∫ | b a |
(2)
∫ | 2π 0 |
(3)应用微积分基本定理,有
∫ | 2 1 |
1 |
x |
(4)f(x)的原函数为F(x),且F(x)是以T为周期的函数,则
∫ | a 0 |
∫ | a+T T |
其中正确命题的个数为( )
A.1
B.2
C.3
D.4
▼优质解答
答案和解析
(1)由∫baf(x)dx=F(b)-F(a)>0,得F(b)>F(a),未必f(x)>0.(1)错误.
(2)∫02π|sinx|dx=∫0π|sinx|dx+∫π2π|sinx|dx=∫0πsinxdx+∫π2π(-sinx)dx=(-cosx)|0π+cosx|π2π=1-(-1)+1-(-1)=4.(2)正确.
(3)根据函数导数运算性质,若F′(x)=
,应有 F(x)=lnx+c (c为常数),(3)错误.
(4)∫0af(x)dx=F(a)-F(0),∫Ta+Tf(x)dx=F(a+T)-F(T)=F(a)-F(0),即
f(x)dx=
f(x)dx;(4)正确.
正确命题的个数为2,
故选B.
(2)∫02π|sinx|dx=∫0π|sinx|dx+∫π2π|sinx|dx=∫0πsinxdx+∫π2π(-sinx)dx=(-cosx)|0π+cosx|π2π=1-(-1)+1-(-1)=4.(2)正确.
(3)根据函数导数运算性质,若F′(x)=
1 |
x |
(4)∫0af(x)dx=F(a)-F(0),∫Ta+Tf(x)dx=F(a+T)-F(T)=F(a)-F(0),即
∫ | a 0 |
∫ | a+T T |
正确命题的个数为2,
故选B.
看了给出以下命题:(1)若∫baf...的网友还看了以下:
若a>b>0,则下列不一定成立的是( ).A.ac>bc B.a+c>b+c C.1/a>1/b 2020-05-16 …
有一个高为1.1米的正方体水池刚好能装满28桶水,已知水桶是一个圆柱体,...有一个高为1.1米的 2020-05-20 …
定义在(-1,1)上的函数f(x)-f(y)=f((x-y)/(1-xy)),当X∈(-1,0), 2020-06-09 …
一、我们知道1/1×2=1/1-1/2=1/2,1/2×3=1/2-1/3=1/6验证:1/3×4 2020-07-17 …
直角三角形1:1:根号2请问各路高手:直角三角形三个角分别为30°60°90°我想问的是:1:1: 2020-07-22 …
寻找规律解数学题1/1*2=1-1/22/2*3=1/2-1/31/3*4=1/3-1/4……计算 2020-07-22 …
由下列各式:1>1/2,1+1/2+1/3>1有下列各式:1>1/2;1+1/2+1/3>1;1+1 2020-10-30 …
(1)一本书,如果每天看40页,5天可以看完.若每天看10页,多少天才能看完?(2)一本书,如果每天 2020-11-03 …
计算一道数学题,(1+1/2)×(1+1/3)×(1+1/4)×(1+1/5)×(1+1/6)×(1 2020-11-30 …
已知函数f(x)=x^2+x+c,若f(0)>0,f(p)<0,则必有?1.f(p+1)>02.f( 2020-12-08 …