早教吧作业答案频道 -->数学-->
已知数列{an}的各项均为正数,对任意n∈N*,它的前n项和Sn,满足Sn=16(an+1)(an+2),并且a2,a4,a9成等比数列.(1)求数列(an}的通项公式.(2)设bn=(-1)n+1anan+1,Tn为数列{bn}的前n项和
题目详情
已知数列{an}的各项均为正数,对任意n∈N*,它的前n项和Sn,满足Sn=
(an+1)(an+2),并且a2,a4,a9成等比数列.
(1)求数列(an}的通项公式.
(2)设bn=(-1)n+1anan+1,Tn为数列{bn}的前n项和,求Tn.
| 1 | 
| 6 | 
(1)求数列(an}的通项公式.
(2)设bn=(-1)n+1anan+1,Tn为数列{bn}的前n项和,求Tn.
▼优质解答
答案和解析
(1)∵Sn=
(an+1)(an+2),
∴当n≥2时,Sn-1=
(an-1+1)(an-1+2),
两式相减得:6an=(an2+3an)-(an-12+3an-1),
又∵数列{an}的各项均为正数,
∴an-an-1=3,
又∵S1=
(a1+1)(a1+2),
∴a12-3a1+2=0,即a1=1或a1=2,
又∵a2,a4,a9成等比数列,
∴(a1+9)2=(a1+3)(a1+24),
解得:a1=1,
∴数列{an}是首项为1,公差为3的等差数列,
∴an=1+3(n-1)=3n-2;
(2)∵an=3n-2,
∴anan+1=(3n-2)(3n+1),
当n为偶数时,Tn=a1a2-a2a3+a3a4-a4a5+…+an-1an-anan+1
=a2(a1-a3)+a4(a3-a5)+…+an(an-1-an+1)
=-6(a2+a4+…+an)
=-6×
=-
;
当n为奇数时,Tn=Tn-1+anan+1
=-
+(3n-2)(3n+1)
=
n2+3n-
;
综上所述,Tn=
.                    
| 1 | 
| 6 | 
∴当n≥2时,Sn-1=
| 1 | 
| 6 | 
两式相减得:6an=(an2+3an)-(an-12+3an-1),
又∵数列{an}的各项均为正数,
∴an-an-1=3,
又∵S1=
| 1 | 
| 6 | 
∴a12-3a1+2=0,即a1=1或a1=2,
又∵a2,a4,a9成等比数列,
∴(a1+9)2=(a1+3)(a1+24),
解得:a1=1,
∴数列{an}是首项为1,公差为3的等差数列,
∴an=1+3(n-1)=3n-2;
(2)∵an=3n-2,
∴anan+1=(3n-2)(3n+1),
当n为偶数时,Tn=a1a2-a2a3+a3a4-a4a5+…+an-1an-anan+1
=a2(a1-a3)+a4(a3-a5)+…+an(an-1-an+1)
=-6(a2+a4+…+an)
=-6×
  | ||
| 2 | 
=-
| 9n2+6n | 
| 2 | 
当n为奇数时,Tn=Tn-1+anan+1
=-
| 9(n-1)2+6(n-1) | 
| 2 | 
=
| 9 | 
| 2 | 
| 7 | 
| 2 | 
综上所述,Tn=
  | 
 看了已知数列{an}的各项均为正数...的网友还看了以下:
直接写得数.1.4×100=2.4÷100=1-0.8=0.32+1.98=n×n=9×99+9= 2020-04-07 …
(1/(n^2 n 1 ) 2/(n^2 n 2) 3/(n^2 n 3) ……n/(n^2 n 2020-05-16 …
若n为一自然数,说明n(n+1)(n+2)(n+3)与1的和为一平方数n(n+1)(n+2)(n+ 2020-05-16 …
为什么n(n+1)(n+2)可拆成1/4[n(n+1)(n+2)(n+3)-(n-1)n(n+1) 2020-06-22 …
若f(n)为n2+1的各位数字之和(n∈N*),例如:∵142+1=197,1+9+7=17,∴f 2020-07-18 …
若f(n)为n2+1(n∈N*)的各位数字之和,如142+1=197,1+9+7=17,则f(14 2020-07-18 …
当x为正整数时,x的n次方的个位数随n的变化(1)数0,1,5,6周期为1;4,9的周期为2;2, 2020-07-31 …
数论+集合1.证明5个相继的正整数之积不是完全平方数设n≥3,(n-2)(n-1)n(n+1)(n+ 2020-10-31 …
已知数列{a底n}中,a1=a2=1,且an=an-1+an-2(n≥3,n∈n*),设bn=an/ 2020-11-27 …
计算-x^2·(-3)^3+3x^3·(-x)^2-4(-x)·(-x^4)[(b-3)^2]^(2 2020-12-27 …