早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知数列{an}的各项均为正数,对任意n∈N*,它的前n项和Sn,满足Sn=16(an+1)(an+2),并且a2,a4,a9成等比数列.(1)求数列(an}的通项公式.(2)设bn=(-1)n+1anan+1,Tn为数列{bn}的前n项和

题目详情
已知数列{an}的各项均为正数,对任意n∈N*,它的前n项和Sn,满足Sn=
1
6
(an+1)(an+2),并且a2,a4,a9成等比数列.
(1)求数列(an}的通项公式.
(2)设bn=(-1)n+1anan+1,Tn为数列{bn}的前n项和,求Tn
▼优质解答
答案和解析
(1)∵Sn=
1
6
(an+1)(an+2),
∴当n≥2时,Sn-1=
1
6
(an-1+1)(an-1+2),
两式相减得:6an=(an2+3an)-(an-12+3an-1),
又∵数列{an}的各项均为正数,
∴an-an-1=3,
又∵S1=
1
6
(a1+1)(a1+2),
a12-3a1+2=0,即a1=1或a1=2,
又∵a2,a4,a9成等比数列,
(a1+9)2=(a1+3)(a1+24),
解得:a1=1,
∴数列{an}是首项为1,公差为3的等差数列,
∴an=1+3(n-1)=3n-2;
(2)∵an=3n-2,
∴anan+1=(3n-2)(3n+1),
当n为偶数时,Tn=a1a2-a2a3+a3a4-a4a5+…+an-1an-anan+1
=a2(a1-a3)+a4(a3-a5)+…+an(an-1-an+1
=-6(a2+a4+…+an
=-6×
n
2
(4+3n-2)
2

=-
9n2+6n
2

当n为奇数时,Tn=Tn-1+anan+1
=-
9(n-1)2+6(n-1)
2
+(3n-2)(3n+1)
=
9
2
n2+3n-
7
2

综上所述,Tn=
-
9n2+6n
2
n为偶数
9n2+6n-7
2
n为奇数