早教吧作业答案频道 -->数学-->
抛物线X^=8Y的焦点为F,准线为L,则过点F和M(8,8)且与准线L相切的圆的个数,怎么求直线Y=KX+1与双曲线X^-Y^=1的左支交与AB两点,另一直线L过点(-2,0)和AB的中点,则直线L在Y轴上的截距B的取值范围,
题目详情
抛物线X^=8Y的焦点为F,准线为L,则过点F和M(8,8)且与准线L相切的圆的个数,怎么求
直线Y=KX+1与双曲线X^-Y^=1的左支交与A B两点,另一直线L过点(-2,0)和AB的中点,则直线L在Y轴上的截距B的取值范围,答案为(-∞,-2-根好2)并(2,+∞),
直线Y=KX+1与双曲线X^-Y^=1的左支交与A B两点,另一直线L过点(-2,0)和AB的中点,则直线L在Y轴上的截距B的取值范围,答案为(-∞,-2-根好2)并(2,+∞),
▼优质解答
答案和解析
1.
焦点F(0,2) 准线y=-2
设:圆心为P
那么PF=P到准线的距离,而这其实就是抛物线的几何定义,也就是说P在抛物线上
又圆P过FM,所以P在FM的垂直平分线上
也就是说P为FM垂直平分线与抛物线的交点
FM的中点为(4,5) FM的斜率为3/4
那么FM的垂直平分线为y-5=-4/3(x-4) 4x+3y-31=0
与x^2=8y联立得到:x^2=8(31-4x)/3,3x^2+32x-248=0
判别式>0
所以有两个交点,也就是说有两个圆心,有两个圆
2.
联立:(1-k^2)x^2-2kx-2=0
x1+x2=2k/(1-k^2) x1x2=-2/(1-k^2)
判别式=8-4k^2>0 k^20 x1+x2
焦点F(0,2) 准线y=-2
设:圆心为P
那么PF=P到准线的距离,而这其实就是抛物线的几何定义,也就是说P在抛物线上
又圆P过FM,所以P在FM的垂直平分线上
也就是说P为FM垂直平分线与抛物线的交点
FM的中点为(4,5) FM的斜率为3/4
那么FM的垂直平分线为y-5=-4/3(x-4) 4x+3y-31=0
与x^2=8y联立得到:x^2=8(31-4x)/3,3x^2+32x-248=0
判别式>0
所以有两个交点,也就是说有两个圆心,有两个圆
2.
联立:(1-k^2)x^2-2kx-2=0
x1+x2=2k/(1-k^2) x1x2=-2/(1-k^2)
判别式=8-4k^2>0 k^20 x1+x2
看了抛物线X^=8Y的焦点为F,准...的网友还看了以下:
圆和直线方程已知直线l的方程为x-y+2根号2=0,圆的方程为x+y=1(1)若Q为圆O上任一 2020-05-17 …
已知直线l的方程x=-2,且直线l与x轴相交与点M,圆O:x^2+y^2=1与x轴交于A,B两点~ 2020-05-20 …
已知线段AB和直线l,过A、B两点作圆,并使圆心在l上当L与AB斜交时,可以作几个这样的圆?当l垂 2020-06-04 …
声控开关怎么接灯我有个声控开关,上面有两个接线点,L和A,求接法, 2020-06-25 …
关于圆锥的侧面展开图的中心角求法问题如果圆锥的侧面积是全面积的3/4,求圆锥的侧面展开图的中心角. 2020-07-05 …
(1)画一点P,过点P画直线AB,在直线AB外画一点Q.(2)点A在直线点l上,点B和点C都(1) 2020-07-20 …
如图a直线l经过圆o的圆心o,且与圆o交于A,B两点,点c在圆o上且点C在圆o上,且∠AOC=30 2020-07-26 …
已知椭圆E:x^2/8+y^2/4=1的左焦点为F,左准线l与x轴的交点是圆C的圆心,圆C恰好经过 2020-07-31 …
已知直线l的方程x=-2,且直线l与x轴相交与点M,圆O:x^2+y^2=1与x轴交于A,B两点~( 2020-11-27 …
(1/2)设抛物线C:x^2=2py的焦点为F,准线为l,A为C上一点,已知F为圆心,FA为半径的圆 2020-11-27 …