早教吧作业答案频道 -->其他-->
已知函数y=f(x)的定义域为R,且对任意a、b属于R,都有f(a+b)=f(a)+f(b),切当x>0时,f(x)
题目详情
已知函数y=f(x)的定义域为R,且对任意a、b属于R,都有f(a+b)=f(a)+f(b),切当x>0时,f(x)<0恒成立,f(3)=-3
1.证明:函数y=f(x)是R上的减函数
2.证明:函数y=f(x)是奇函数
3.求函数y=f(x)在[m,n](m,n属于Z)上的值域
1.证明:函数y=f(x)是R上的减函数
2.证明:函数y=f(x)是奇函数
3.求函数y=f(x)在[m,n](m,n属于Z)上的值域
▼优质解答
答案和解析
已知函数y=f(x)的定义域为R,且对任意a、b属于R,都有f(a+b)=f(a)+f(b),切当x>0时,f(x)<0恒成立,f(3)=-3
1.证明:函数y=f(x)是R上的减函数
设x1<x2,则x2-x1>0,f(x2-x1)<0
∴f(x2)-f(x1)=f[x1+(x2-x1)]-f(x1)
=f(x1)+f(x2-x1)-f(x1)
=f(x2-x1)<0
∴函数y=f(x)是R上的减函数
2.证明:函数y=f(x)是奇函数
在f(a+b)=f(a)+f(b)中,令b=0,则
f(a)=f(a)+f(0)
∴f(0)=0
在f(a+b)=f(a)+f(b)中,令b=﹣a,则
f(0)=f(a)+f(﹣a)
∴f(﹣a)+f(a)=0
∴f(﹣a)=﹣f(a)
∴函数y=f(x)是奇函数
3.求函数y=f(x)在[m,n](m,n属于Z)上的值域
f(2a)=f(a)+f(a)=2f(a)
f(3a)=f(2a)+f(a)=2f(a)+f(a)=3f(a)
……
f(ma)=mf(a)(当m>0时)
当m<0时,f(ma)=﹣f(﹣ma)=﹣﹙﹣m)f(a)=mf(a)
即f(ma)=mf(a)(m∈Z)
∴f(3)=3f(1)=-3
∴f(1)=-1
∴f(m)=mf(1)=-m
f(n)=nf(1)=-n
∵函数y=f(x)是R上的减函数
∴函数y=f(x)在[m,n](m,n属于Z)上的值域
是[f(n),f(m)]=[﹣n,﹣m]
1.证明:函数y=f(x)是R上的减函数
设x1<x2,则x2-x1>0,f(x2-x1)<0
∴f(x2)-f(x1)=f[x1+(x2-x1)]-f(x1)
=f(x1)+f(x2-x1)-f(x1)
=f(x2-x1)<0
∴函数y=f(x)是R上的减函数
2.证明:函数y=f(x)是奇函数
在f(a+b)=f(a)+f(b)中,令b=0,则
f(a)=f(a)+f(0)
∴f(0)=0
在f(a+b)=f(a)+f(b)中,令b=﹣a,则
f(0)=f(a)+f(﹣a)
∴f(﹣a)+f(a)=0
∴f(﹣a)=﹣f(a)
∴函数y=f(x)是奇函数
3.求函数y=f(x)在[m,n](m,n属于Z)上的值域
f(2a)=f(a)+f(a)=2f(a)
f(3a)=f(2a)+f(a)=2f(a)+f(a)=3f(a)
……
f(ma)=mf(a)(当m>0时)
当m<0时,f(ma)=﹣f(﹣ma)=﹣﹙﹣m)f(a)=mf(a)
即f(ma)=mf(a)(m∈Z)
∴f(3)=3f(1)=-3
∴f(1)=-1
∴f(m)=mf(1)=-m
f(n)=nf(1)=-n
∵函数y=f(x)是R上的减函数
∴函数y=f(x)在[m,n](m,n属于Z)上的值域
是[f(n),f(m)]=[﹣n,﹣m]
看了已知函数y=f(x)的定义域为...的网友还看了以下:
一道函数证明题..若函数f(x,y)对任意正实数t满足f(tx,ty)=f(x,y)乘以t的n次方 2020-05-13 …
若函数f(x,y)对任意正实数t满足f(tx,ty)=f(x,y)乘以t的n次方,就称f(x,y) 2020-05-13 …
,;定义在正整数集f(x)对任意m,n,都有f(m+n)=f(m)+f(n)+4(m+n)-2,且 2020-05-13 …
已知函数fx的定义域为R,对任意实数x,y满足f(x+y)=f(x)f(y)且f(x)>0,f(2 2020-05-13 …
若函数F(x)=f(x)*g(x)是偶函数,g(x)的图象关于原点对称,且f(x)的图象关于原点对 2020-05-16 …
奇函数的对称轴如果f(2-x)=f(2+x),f(7-x)=f(7+x),所以函数的关于x=2或者 2020-05-19 …
f(x)是定义在R上的函数,且对任意实数x,y都有f(x+y)=f(x)+f(y)-1成立,当f( 2020-06-02 …
如题函数f(x)对任意实数x满足条件f(x+1)=1/f(x)若f(1)=-5,则f[f(5)]= 2020-06-06 …
假设玉米的穗长由Ee、Ff、Gg、Hh四对基因决定,E、F、G、H为长穗基因,e、f、g、h为短穗 2020-06-08 …
设f(x)是定义域在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x属于[0,2] 2020-06-09 …