早教吧作业答案频道 -->其他-->
已知函数y=f(x)的定义域为R,且对任意a、b属于R,都有f(a+b)=f(a)+f(b),切当x>0时,f(x)
题目详情
已知函数y=f(x)的定义域为R,且对任意a、b属于R,都有f(a+b)=f(a)+f(b),切当x>0时,f(x)<0恒成立,f(3)=-3
1.证明:函数y=f(x)是R上的减函数
2.证明:函数y=f(x)是奇函数
3.求函数y=f(x)在[m,n](m,n属于Z)上的值域
1.证明:函数y=f(x)是R上的减函数
2.证明:函数y=f(x)是奇函数
3.求函数y=f(x)在[m,n](m,n属于Z)上的值域
▼优质解答
答案和解析
已知函数y=f(x)的定义域为R,且对任意a、b属于R,都有f(a+b)=f(a)+f(b),切当x>0时,f(x)<0恒成立,f(3)=-3
1.证明:函数y=f(x)是R上的减函数
设x1<x2,则x2-x1>0,f(x2-x1)<0
∴f(x2)-f(x1)=f[x1+(x2-x1)]-f(x1)
=f(x1)+f(x2-x1)-f(x1)
=f(x2-x1)<0
∴函数y=f(x)是R上的减函数
2.证明:函数y=f(x)是奇函数
在f(a+b)=f(a)+f(b)中,令b=0,则
f(a)=f(a)+f(0)
∴f(0)=0
在f(a+b)=f(a)+f(b)中,令b=﹣a,则
f(0)=f(a)+f(﹣a)
∴f(﹣a)+f(a)=0
∴f(﹣a)=﹣f(a)
∴函数y=f(x)是奇函数
3.求函数y=f(x)在[m,n](m,n属于Z)上的值域
f(2a)=f(a)+f(a)=2f(a)
f(3a)=f(2a)+f(a)=2f(a)+f(a)=3f(a)
……
f(ma)=mf(a)(当m>0时)
当m<0时,f(ma)=﹣f(﹣ma)=﹣﹙﹣m)f(a)=mf(a)
即f(ma)=mf(a)(m∈Z)
∴f(3)=3f(1)=-3
∴f(1)=-1
∴f(m)=mf(1)=-m
f(n)=nf(1)=-n
∵函数y=f(x)是R上的减函数
∴函数y=f(x)在[m,n](m,n属于Z)上的值域
是[f(n),f(m)]=[﹣n,﹣m]
1.证明:函数y=f(x)是R上的减函数
设x1<x2,则x2-x1>0,f(x2-x1)<0
∴f(x2)-f(x1)=f[x1+(x2-x1)]-f(x1)
=f(x1)+f(x2-x1)-f(x1)
=f(x2-x1)<0
∴函数y=f(x)是R上的减函数
2.证明:函数y=f(x)是奇函数
在f(a+b)=f(a)+f(b)中,令b=0,则
f(a)=f(a)+f(0)
∴f(0)=0
在f(a+b)=f(a)+f(b)中,令b=﹣a,则
f(0)=f(a)+f(﹣a)
∴f(﹣a)+f(a)=0
∴f(﹣a)=﹣f(a)
∴函数y=f(x)是奇函数
3.求函数y=f(x)在[m,n](m,n属于Z)上的值域
f(2a)=f(a)+f(a)=2f(a)
f(3a)=f(2a)+f(a)=2f(a)+f(a)=3f(a)
……
f(ma)=mf(a)(当m>0时)
当m<0时,f(ma)=﹣f(﹣ma)=﹣﹙﹣m)f(a)=mf(a)
即f(ma)=mf(a)(m∈Z)
∴f(3)=3f(1)=-3
∴f(1)=-1
∴f(m)=mf(1)=-m
f(n)=nf(1)=-n
∵函数y=f(x)是R上的减函数
∴函数y=f(x)在[m,n](m,n属于Z)上的值域
是[f(n),f(m)]=[﹣n,﹣m]
看了已知函数y=f(x)的定义域为...的网友还看了以下:
已知函数f(x)=alnx/(x+1) + b/x ,曲线y=f(x)在点(1,f(1))处切线方 2020-05-15 …
已知函数f(x)=ax2+bx+1(a,b为实数),x∈R,F(x)=f(x)(x>0)−f(x) 2020-05-17 …
已知a大于等于0,函数f(x)=x^2+ax.设x1属于(负无穷,-a/2),记曲线y=f(x)在 2020-05-23 …
如图1,直线y=-34x+3与x轴相交于点A,与y轴相交于点B,点C(m,n)是第二象限内任意一点 2020-06-12 …
在圆O上任意一点C,以C点为圆心作圆与圆O的直径AB相切于点D,两圆相交于E,F两点,求证:EF平 2020-06-30 …
数学函数题.做一问是一问!做一问发上来一问.函数f(x)=1/2ax^2-(2a+1)x+2lnx 2020-07-08 …
如图所示,圆i是R他△ABC的内切圆,角C=90°,圆i和三边分别相切于点D,E,F.如图,圆I是 2020-08-01 …
已知函数f(x)=e的x次方+ax,g(x)=e的x次方乘lnx,e是自然对数的底数,(1)若曲线 2020-08-02 …
点O是以四边形abcd的外接园和内切园的园心,内切园与四边形各边分别相切于点e,f,g,h.求证:四 2020-12-25 …
○O的半径是1与直角三角形ABC切于D,E,F,角A是30°,角C是90°求阴影部分的面积图形大概是 2021-01-11 …