早教吧作业答案频道 -->其他-->
已知函数f(x)=ln(ex+a)(a>0).(1)求函数y=f(x)的反函数y=f-1(x)及f(x)的导数f′(x);(2)假设对任意x∈[ln(3a),ln(4a)],不等式|m-f-1(x)|+ln(f′(x))<0成立,求实数
题目详情
已知函数f(x)=ln(ex+a)(a>0).
(1)求函数y=f(x)的反函数y=f-1(x)及f(x)的导数f′(x);
(2)假设对任意x∈[ln(3a),ln(4a)],不等式|m-f-1(x)|+ln(f′(x))<0成立,求实
数m的取值范围.
(1)求函数y=f(x)的反函数y=f-1(x)及f(x)的导数f′(x);
(2)假设对任意x∈[ln(3a),ln(4a)],不等式|m-f-1(x)|+ln(f′(x))<0成立,求实
数m的取值范围.
▼优质解答
答案和解析
(1)、设y=ln(ex+a),a>0,则ey=ex+a,∴ex=ey-a,a>0,∴x=ln(ey-a),x,y互换得到函数y=f(x)的反函数f-1(x)=ln(ex-a),x∈R;f′(x)=
.
(2)、由|m-f-1(x)|+ln(f'(x))<0得ln(ex-a)-ln(ex+a)+x<m<ln(ex-a)+ln(ex+a)-x.
设ϕ(x)=ln(ex-a)-ln(ex+a)+x,ψ(x)=ln(ex-a)+ln(ex+a)-x,
于是原不等式对于x∈[ln(3a),ln(4a)]恒成立等价于ϕ(x)<m<ψ(x).
由ϕ′(x)=
−
+1,ψ′(x)=
+
−1,注意到0<ex-a<ex<ex+a,故有ϕ'(x)>0,ψ'(x)>0,从而可ϕ(x)与ϕ(x)均在[ln(3a),ln(4a)]上单调递增,因此不等式ϕ(x)<m<ψ(x)成立当且仅当ϕ(ln(4a))<m<ψ(ln(3a)).即ln(
a)<m<ln(
a).
| ex |
| ex+a |
(2)、由|m-f-1(x)|+ln(f'(x))<0得ln(ex-a)-ln(ex+a)+x<m<ln(ex-a)+ln(ex+a)-x.
设ϕ(x)=ln(ex-a)-ln(ex+a)+x,ψ(x)=ln(ex-a)+ln(ex+a)-x,
于是原不等式对于x∈[ln(3a),ln(4a)]恒成立等价于ϕ(x)<m<ψ(x).
由ϕ′(x)=
| ex |
| ex−a |
| ex |
| ex+a |
| ex |
| ex−a |
| ex |
| ex+a |
| 12 |
| 5 |
| 8 |
| 3 |
看了已知函数f(x)=ln(ex+...的网友还看了以下:
f(x)+f(y)=2f[(x+y)/2]f[(x-y)/2],f(0)不等于,且存在非零常数c, 2020-05-14 …
求RLC串联电路电感的问题假设有一个RLC出=串联电路,电路电源为3.00VAC电源,电路中有一个 2020-06-04 …
f(x)在[0,1]可导,f(x)满足f(0)=0,f(1)=1证明对任意的正数a,b,a/f'( 2020-07-16 …
这道数学题怎么解?哪位能帮帮我ξ已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0) 2020-07-21 …
设f(x)=arctan1/x,求f(0-0),f(0+0).我想问下后面的f(0-0),f(0+ 2020-07-22 …
在f(m,n)中,.m.n.f(m,n)均为非负整数且对任意的m,n有f(0,n)=n+1,f(m 2020-07-31 …
已知定义在(0,+∞)上的函数f(x)满足:1.对于任意的x,y∈(0,+∞)都有f(x+y)=f 2020-08-01 …
若函数f(x),x属于R,则对于任意的x1,x2都有f(x1+x2)+f(x1-x2)=2f(x1 2020-08-01 …
3位任意0-9的数字组合任意0-9的数字组合城3位数字有多少种组合方式? 2020-11-07 …
设对任意实数x,y有[f(x)+f(y)]/2=0,f(0)=c,证明f(x)恒为c设对任意实数x, 2020-11-10 …