早教吧作业答案频道 -->数学-->
如图1,△ABC为等腰直角三角形,∠ACB=90°,F是AC边上的一个动点(点F与A、C不重合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF、AD.(1)①猜想图1中线段BF、AD的数量关系及所在
题目详情
如图1,△ABC为等腰直角三角形,∠ACB=90°,F是AC边上的一个动点(点F与A、C不重合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF、AD.

(1)①猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论;
②将图1中的正方形CDEF,绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2、图3的情形.图2中BF交AC于点H,交AD于点O,请你判断①中得到的结论是否仍然成立,并选取图2证明你的判断.
(2)将原题中的等腰直角三角形ABC改为直角三角形ABC,∠ACB=90°,正方形CDEF改为矩形CDEF,如图4,且AC=4,BC=3,CD=
,CF=1,BF交AC于点H,交AD于点O,连接BD、AF,求BD2+AF2的值.

(1)①猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论;
②将图1中的正方形CDEF,绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2、图3的情形.图2中BF交AC于点H,交AD于点O,请你判断①中得到的结论是否仍然成立,并选取图2证明你的判断.
(2)将原题中的等腰直角三角形ABC改为直角三角形ABC,∠ACB=90°,正方形CDEF改为矩形CDEF,如图4,且AC=4,BC=3,CD=
| 4 |
| 3 |
▼优质解答
答案和解析
(1)①BF=AD,BF⊥AD;
②BF=AD,BF⊥AD仍然成立,
证明:∵△ABC是等腰直角三角形,∠ACB=90°,
∴AC=BC,
∵四边形CDEF是正方形,
∴CD=CF,∠FCD=90°,
∴∠ACB+∠ACF=∠FCD+∠ACF,
即∠BCF=∠ACD,
在△BCF和△ACD中
∴△BCF≌△ACD(SAS),
∴BF=AD,∠CBF=∠CAD,
又∵∠BHC=∠AHO,∠CBH+∠BHC=90°,
∴∠CAD+∠AHO=90°,
∴∠AOH=90°,
∴BF⊥AD;
(2)证明:连接DF,

∵四边形CDEF是矩形,
∴∠FCD=90°,
又∵∠ACB=90°,
∴∠ACB=∠FCD
∴∠ACB+∠ACF=∠FCD+∠ACF,
即∠BCF=∠ACD,
∵AC=4,BC=3,CD=
,CF=1,
∴
=
=
,
∴△BCF∽△ACD,
∴∠CBF=∠CAD,
又∵∠BHC=∠AHO,∠CBH+∠BHC=90°
∴∠CAD+∠AHO=90°,
∴∠AOH=90°,
∴BF⊥AD,
∴∠BOD=∠AOB=90°,
∴BD2=OB2+OD2,AF2=OA2+OF2,AB2=OA2+OB2,DF2=OF2+OD2,
∴BD2+AF2=OB2+OD2+OA2+OF2=AB2+DF2,
∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,
∴AB2=AC2+BC2=32+42=25,
∵在Rt△FCD中,∠FCD=90°,CD=
,CF=1,
∴DF2=CD2+CF2=(
)2+12=
,
∴BD2+AF2=AB2+DF2=25+
=
.
②BF=AD,BF⊥AD仍然成立,
证明:∵△ABC是等腰直角三角形,∠ACB=90°,
∴AC=BC,
∵四边形CDEF是正方形,
∴CD=CF,∠FCD=90°,
∴∠ACB+∠ACF=∠FCD+∠ACF,
即∠BCF=∠ACD,
在△BCF和△ACD中
|
∴△BCF≌△ACD(SAS),
∴BF=AD,∠CBF=∠CAD,
又∵∠BHC=∠AHO,∠CBH+∠BHC=90°,
∴∠CAD+∠AHO=90°,
∴∠AOH=90°,
∴BF⊥AD;
(2)证明:连接DF,

∵四边形CDEF是矩形,
∴∠FCD=90°,
又∵∠ACB=90°,
∴∠ACB=∠FCD
∴∠ACB+∠ACF=∠FCD+∠ACF,
即∠BCF=∠ACD,
∵AC=4,BC=3,CD=
| 4 |
| 3 |
∴
| BC |
| AC |
| CF |
| CD |
| 3 |
| 4 |
∴△BCF∽△ACD,
∴∠CBF=∠CAD,
又∵∠BHC=∠AHO,∠CBH+∠BHC=90°
∴∠CAD+∠AHO=90°,
∴∠AOH=90°,
∴BF⊥AD,
∴∠BOD=∠AOB=90°,
∴BD2=OB2+OD2,AF2=OA2+OF2,AB2=OA2+OB2,DF2=OF2+OD2,
∴BD2+AF2=OB2+OD2+OA2+OF2=AB2+DF2,
∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,
∴AB2=AC2+BC2=32+42=25,
∵在Rt△FCD中,∠FCD=90°,CD=
| 4 |
| 3 |
∴DF2=CD2+CF2=(
| 4 |
| 3 |
| 25 |
| 9 |
∴BD2+AF2=AB2+DF2=25+
| 25 |
| 9 |
| 250 |
| 9 |
看了如图1,△ABC为等腰直角三角...的网友还看了以下:
在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,将线段AD绕点A逆时针旋转90°得 2020-05-13 …
已知:点D是等腰直角三角形ABC斜边BC所在直线上一点(不与点B重合),连接AD.(1)如图1,当 2020-06-08 …
在△ABC中,∠C=90°,AC=BC,点D在射线BC上(不与点B、C重合),连接AD,将AD绕点 2020-06-25 …
如图,在△ABC中,∠ACB=90°,∠A=60°,AC=3,点D是边AB上的动点(点D与点A、B 2020-07-20 …
已知△ABC为等边三角形,点D为直线BC上一动点(点D不与点B、点C重合).以AD为边作等边三角形 2020-07-27 …
已知△ABC为等边三角形,点D为直线BC上一动点(点D不与点B、点C重合).以AD为边作等边三角形 2020-07-27 …
已知△ABC为等边三角形,点D为直线BC上一动点(点D不与点B、点C重合).以AD为边作等边三角形 2020-07-27 …
在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接C 2020-07-30 …
连接题1点样把大苯象放入雪拒?2狮子召开武林大会边噶毛去?3小明想过河,但河有很多鳄鱼,有毛桥和船. 2020-11-08 …
如图,在△ABC中,∠CAB=∠CBA=45°,CA=CB,点E为BC的中点,CN⊥AE交AB于N, 2020-12-07 …