早教吧作业答案频道 -->数学-->
如图1,△ABC为等腰直角三角形,∠ACB=90°,F是AC边上的一个动点(点F与A、C不重合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF、AD.(1)①猜想图1中线段BF、AD的数量关系及所在
题目详情
如图1,△ABC为等腰直角三角形,∠ACB=90°,F是AC边上的一个动点(点F与A、C不重合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF、AD.

(1)①猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论;
②将图1中的正方形CDEF,绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2、图3的情形.图2中BF交AC于点H,交AD于点O,请你判断①中得到的结论是否仍然成立,并选取图2证明你的判断.
(2)将原题中的等腰直角三角形ABC改为直角三角形ABC,∠ACB=90°,正方形CDEF改为矩形CDEF,如图4,且AC=4,BC=3,CD=
,CF=1,BF交AC于点H,交AD于点O,连接BD、AF,求BD2+AF2的值.

(1)①猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论;
②将图1中的正方形CDEF,绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2、图3的情形.图2中BF交AC于点H,交AD于点O,请你判断①中得到的结论是否仍然成立,并选取图2证明你的判断.
(2)将原题中的等腰直角三角形ABC改为直角三角形ABC,∠ACB=90°,正方形CDEF改为矩形CDEF,如图4,且AC=4,BC=3,CD=
4 |
3 |
▼优质解答
答案和解析
(1)①BF=AD,BF⊥AD;
②BF=AD,BF⊥AD仍然成立,
证明:∵△ABC是等腰直角三角形,∠ACB=90°,
∴AC=BC,
∵四边形CDEF是正方形,
∴CD=CF,∠FCD=90°,
∴∠ACB+∠ACF=∠FCD+∠ACF,
即∠BCF=∠ACD,
在△BCF和△ACD中
∴△BCF≌△ACD(SAS),
∴BF=AD,∠CBF=∠CAD,
又∵∠BHC=∠AHO,∠CBH+∠BHC=90°,
∴∠CAD+∠AHO=90°,
∴∠AOH=90°,
∴BF⊥AD;
(2)证明:连接DF,

∵四边形CDEF是矩形,
∴∠FCD=90°,
又∵∠ACB=90°,
∴∠ACB=∠FCD
∴∠ACB+∠ACF=∠FCD+∠ACF,
即∠BCF=∠ACD,
∵AC=4,BC=3,CD=
,CF=1,
∴
=
=
,
∴△BCF∽△ACD,
∴∠CBF=∠CAD,
又∵∠BHC=∠AHO,∠CBH+∠BHC=90°
∴∠CAD+∠AHO=90°,
∴∠AOH=90°,
∴BF⊥AD,
∴∠BOD=∠AOB=90°,
∴BD2=OB2+OD2,AF2=OA2+OF2,AB2=OA2+OB2,DF2=OF2+OD2,
∴BD2+AF2=OB2+OD2+OA2+OF2=AB2+DF2,
∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,
∴AB2=AC2+BC2=32+42=25,
∵在Rt△FCD中,∠FCD=90°,CD=
,CF=1,
∴DF2=CD2+CF2=(
)2+12=
,
∴BD2+AF2=AB2+DF2=25+
=
.
②BF=AD,BF⊥AD仍然成立,
证明:∵△ABC是等腰直角三角形,∠ACB=90°,
∴AC=BC,
∵四边形CDEF是正方形,
∴CD=CF,∠FCD=90°,
∴∠ACB+∠ACF=∠FCD+∠ACF,
即∠BCF=∠ACD,
在△BCF和△ACD中
|
∴△BCF≌△ACD(SAS),
∴BF=AD,∠CBF=∠CAD,
又∵∠BHC=∠AHO,∠CBH+∠BHC=90°,
∴∠CAD+∠AHO=90°,
∴∠AOH=90°,
∴BF⊥AD;
(2)证明:连接DF,

∵四边形CDEF是矩形,
∴∠FCD=90°,
又∵∠ACB=90°,
∴∠ACB=∠FCD
∴∠ACB+∠ACF=∠FCD+∠ACF,
即∠BCF=∠ACD,
∵AC=4,BC=3,CD=
4 |
3 |
∴
BC |
AC |
CF |
CD |
3 |
4 |
∴△BCF∽△ACD,
∴∠CBF=∠CAD,
又∵∠BHC=∠AHO,∠CBH+∠BHC=90°
∴∠CAD+∠AHO=90°,
∴∠AOH=90°,
∴BF⊥AD,
∴∠BOD=∠AOB=90°,
∴BD2=OB2+OD2,AF2=OA2+OF2,AB2=OA2+OB2,DF2=OF2+OD2,
∴BD2+AF2=OB2+OD2+OA2+OF2=AB2+DF2,
∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,
∴AB2=AC2+BC2=32+42=25,
∵在Rt△FCD中,∠FCD=90°,CD=
4 |
3 |
∴DF2=CD2+CF2=(
4 |
3 |
25 |
9 |
∴BD2+AF2=AB2+DF2=25+
25 |
9 |
250 |
9 |
看了如图1,△ABC为等腰直角三角...的网友还看了以下:
求冲量、动量和动能、合外力对质点所做的功一质量m=2kg的质点在合外力F=2ti+tj(SI)作用下 2020-03-30 …
设m∈R,在平面直角坐标系中,已知向量a=(mx,y+1),向量b=(x,y-1),a⊥b,动点M 2020-05-16 …
在学动量守恒定律时,我利用动量守恒和发生弹性碰撞时动能守恒,推出个公式V1+V1'=V2+V2'. 2020-05-16 …
一道动量的简单题一道物理关于动量的题已知长平板车m1=2.5kg,静止在光滑的水平面上.质量m2= 2020-05-20 …
Pd-C过量H2能还原醚吗福建2007年的第3题有机题目里面的F是8-(3,4-二甲氧基苯基)辛基 2020-07-10 …
在光滑水平面上,动能为E0、动量的大小为p0的小钢球1与静止小钢球2发生碰撞,碰撞前后球1的运动方 2020-07-20 …
1焦=1牛×米,就是()A.把质量为1千克的物体移动1米所做的功B.把重为1牛的物体移动1米所做的 2020-07-21 …
物体动量变化量的大小为5千克.米每秒这说明(1)物体的动量在减小(2)物体的动量在增大(3)物体的 2020-07-21 …
1.原来静止在滑冰场上的两个人,不论谁来推谁一下,两个人都会向相反方向滑去,他们的动量都发生了变化. 2020-10-30 …
1.动量的初末态速度能否不在一条直线上2.如果动量初末态速度不在一条直线上,那如何合成动量3.F的方 2020-11-21 …