早教吧作业答案频道 -->数学-->
(1)在足球比赛中,当守门员远离球门时,进攻队员常常使用“吊射”的战术(把球高高地挑过守门员的头顶射入球门).一位球员在离对方球门30米的M处起脚吊射,假如球飞行的路线是一
题目详情

32 |
3 |
(2)在(1)中,若守门员站在距球门2米远处,而守门员跳起后最多能摸到2.75米高处,他能否在空中截住这次吊射?
32 |
3 |
▼优质解答
答案和解析
(1)由题意可知,抛物线的顶点(14,
),
抛物线过点M(30,0),
设它的解析式为y=a(x-14)2+
,
把点M(30,0)代入y=a(x-14)2+
,
解得a=-
,
∴抛物线的解析式为y=-
(x-14)2+
,
令x=0,得y=
,即足球到达球门时的高度为
米,
>2.44,
∴球不会进入球门;
(2)y=-
(x-14)2+
,
令x=2,得y=
,
即球在离球门2米处得高度为
米,
>2.75,
∴守门员不能在空中截住这次吊射.
32 32 323 3 3),
抛物线过点M(30,0),
设它的解析式为y=a(x-14)22+
,
把点M(30,0)代入y=a(x-14)2+
,
解得a=-
,
∴抛物线的解析式为y=-
(x-14)2+
,
令x=0,得y=
,即足球到达球门时的高度为
米,
>2.44,
∴球不会进入球门;
(2)y=-
(x-14)2+
,
令x=2,得y=
,
即球在离球门2米处得高度为
米,
>2.75,
∴守门员不能在空中截住这次吊射.
32 32 323 3 3,
把点M(30,0)代入y=a(x-14)22+
,
解得a=-
,
∴抛物线的解析式为y=-
(x-14)2+
,
令x=0,得y=
,即足球到达球门时的高度为
米,
>2.44,
∴球不会进入球门;
(2)y=-
(x-14)2+
,
令x=2,得y=
,
即球在离球门2米处得高度为
米,
>2.75,
∴守门员不能在空中截住这次吊射.
32 32 323 3 3,
解得a=-
,
∴抛物线的解析式为y=-
(x-14)2+
,
令x=0,得y=
,即足球到达球门时的高度为
米,
>2.44,
∴球不会进入球门;
(2)y=-
(x-14)2+
,
令x=2,得y=
,
即球在离球门2米处得高度为
米,
>2.75,
∴守门员不能在空中截住这次吊射.
1 1 124 24 24,
∴抛物线的解析式为y=-
(x-14)2+
,
令x=0,得y=
,即足球到达球门时的高度为
米,
>2.44,
∴球不会进入球门;
(2)y=-
(x-14)2+
,
令x=2,得y=
,
即球在离球门2米处得高度为
米,
>2.75,
∴守门员不能在空中截住这次吊射.
1 1 124 24 24(x-14)22+
,
令x=0,得y=
,即足球到达球门时的高度为
米,
>2.44,
∴球不会进入球门;
(2)y=-
(x-14)2+
,
令x=2,得y=
,
即球在离球门2米处得高度为
米,
>2.75,
∴守门员不能在空中截住这次吊射.
32 32 323 3 3,
令x=0,得y=
,即足球到达球门时的高度为
米,
>2.44,
∴球不会进入球门;
(2)y=-
(x-14)2+
,
令x=2,得y=
,
即球在离球门2米处得高度为
米,
>2.75,
∴守门员不能在空中截住这次吊射.
5 5 52 2 2,即足球到达球门时的高度为
米,
>2.44,
∴球不会进入球门;
(2)y=-
(x-14)2+
,
令x=2,得y=
,
即球在离球门2米处得高度为
米,
>2.75,
∴守门员不能在空中截住这次吊射.
5 5 52 2 2米,
>2.44,
∴球不会进入球门;
(2)y=-
(x-14)2+
,
令x=2,得y=
,
即球在离球门2米处得高度为
米,
>2.75,
∴守门员不能在空中截住这次吊射.
5 5 52 2 2>2.44,
∴球不会进入球门;
(2)y=-
(x-14)2+
,
令x=2,得y=
,
即球在离球门2米处得高度为
米,
>2.75,
∴守门员不能在空中截住这次吊射.
1 1 124 24 24(x-14)22+
,
令x=2,得y=
,
即球在离球门2米处得高度为
米,
>2.75,
∴守门员不能在空中截住这次吊射.
32 32 323 3 3,
令x=2,得y=
,
即球在离球门2米处得高度为
米,
>2.75,
∴守门员不能在空中截住这次吊射.
14 14 143 3 3,
即球在离球门2米处得高度为
米,
>2.75,
∴守门员不能在空中截住这次吊射.
14 14 143 3 3米,
>2.75,
∴守门员不能在空中截住这次吊射.
14 14 143 3 3>2.75,
∴守门员不能在空中截住这次吊射.
32 |
3 |
抛物线过点M(30,0),
设它的解析式为y=a(x-14)2+
32 |
3 |
把点M(30,0)代入y=a(x-14)2+
32 |
3 |
解得a=-
1 |
24 |
∴抛物线的解析式为y=-
1 |
24 |
32 |
3 |
令x=0,得y=
5 |
2 |
5 |
2 |
5 |
2 |
∴球不会进入球门;
(2)y=-
1 |
24 |
32 |
3 |
令x=2,得y=
14 |
3 |
即球在离球门2米处得高度为
14 |
3 |
14 |
3 |
∴守门员不能在空中截住这次吊射.
32 |
3 |
抛物线过点M(30,0),
设它的解析式为y=a(x-14)22+
32 |
3 |
把点M(30,0)代入y=a(x-14)2+
32 |
3 |
解得a=-
1 |
24 |
∴抛物线的解析式为y=-
1 |
24 |
32 |
3 |
令x=0,得y=
5 |
2 |
5 |
2 |
5 |
2 |
∴球不会进入球门;
(2)y=-
1 |
24 |
32 |
3 |
令x=2,得y=
14 |
3 |
即球在离球门2米处得高度为
14 |
3 |
14 |
3 |
∴守门员不能在空中截住这次吊射.
32 |
3 |
把点M(30,0)代入y=a(x-14)22+
32 |
3 |
解得a=-
1 |
24 |
∴抛物线的解析式为y=-
1 |
24 |
32 |
3 |
令x=0,得y=
5 |
2 |
5 |
2 |
5 |
2 |
∴球不会进入球门;
(2)y=-
1 |
24 |
32 |
3 |
令x=2,得y=
14 |
3 |
即球在离球门2米处得高度为
14 |
3 |
14 |
3 |
∴守门员不能在空中截住这次吊射.
32 |
3 |
解得a=-
1 |
24 |
∴抛物线的解析式为y=-
1 |
24 |
32 |
3 |
令x=0,得y=
5 |
2 |
5 |
2 |
5 |
2 |
∴球不会进入球门;
(2)y=-
1 |
24 |
32 |
3 |
令x=2,得y=
14 |
3 |
即球在离球门2米处得高度为
14 |
3 |
14 |
3 |
∴守门员不能在空中截住这次吊射.
1 |
24 |
∴抛物线的解析式为y=-
1 |
24 |
32 |
3 |
令x=0,得y=
5 |
2 |
5 |
2 |
5 |
2 |
∴球不会进入球门;
(2)y=-
1 |
24 |
32 |
3 |
令x=2,得y=
14 |
3 |
即球在离球门2米处得高度为
14 |
3 |
14 |
3 |
∴守门员不能在空中截住这次吊射.
1 |
24 |
32 |
3 |
令x=0,得y=
5 |
2 |
5 |
2 |
5 |
2 |
∴球不会进入球门;
(2)y=-
1 |
24 |
32 |
3 |
令x=2,得y=
14 |
3 |
即球在离球门2米处得高度为
14 |
3 |
14 |
3 |
∴守门员不能在空中截住这次吊射.
32 |
3 |
令x=0,得y=
5 |
2 |
5 |
2 |
5 |
2 |
∴球不会进入球门;
(2)y=-
1 |
24 |
32 |
3 |
令x=2,得y=
14 |
3 |
即球在离球门2米处得高度为
14 |
3 |
14 |
3 |
∴守门员不能在空中截住这次吊射.
5 |
2 |
5 |
2 |
5 |
2 |
∴球不会进入球门;
(2)y=-
1 |
24 |
32 |
3 |
令x=2,得y=
14 |
3 |
即球在离球门2米处得高度为
14 |
3 |
14 |
3 |
∴守门员不能在空中截住这次吊射.
5 |
2 |
5 |
2 |
∴球不会进入球门;
(2)y=-
1 |
24 |
32 |
3 |
令x=2,得y=
14 |
3 |
即球在离球门2米处得高度为
14 |
3 |
14 |
3 |
∴守门员不能在空中截住这次吊射.
5 |
2 |
∴球不会进入球门;
(2)y=-
1 |
24 |
32 |
3 |
令x=2,得y=
14 |
3 |
即球在离球门2米处得高度为
14 |
3 |
14 |
3 |
∴守门员不能在空中截住这次吊射.
1 |
24 |
32 |
3 |
令x=2,得y=
14 |
3 |
即球在离球门2米处得高度为
14 |
3 |
14 |
3 |
∴守门员不能在空中截住这次吊射.
32 |
3 |
令x=2,得y=
14 |
3 |
即球在离球门2米处得高度为
14 |
3 |
14 |
3 |
∴守门员不能在空中截住这次吊射.
14 |
3 |
即球在离球门2米处得高度为
14 |
3 |
14 |
3 |
∴守门员不能在空中截住这次吊射.
14 |
3 |
14 |
3 |
∴守门员不能在空中截住这次吊射.
14 |
3 |
∴守门员不能在空中截住这次吊射.
看了(1)在足球比赛中,当守门员远...的网友还看了以下:
氯化铜、氧气、铁、稀盐酸、氢氧化钠五个小伙伴举行了一场趣味篮球赛.比赛中,由氯化铜“队员”发球,“ 2020-05-13 …
单循环赛制比赛队数:2比赛场数:1比赛队数:3比赛场数:3比赛队数4比赛场数是几?队数5场数是几队 2020-06-05 …
考虑两队之间的足球比赛:队0和队1.假设65%的比赛队0胜出,剩余的比赛队1获胜.队0获胜的比赛中 2020-06-14 …
(2013•南昌)+物质王国举行一场趣味篮球赛.某对由铁、二氧化碳、稀硫酸、氢氧化钙、氯化铜五名“ 2020-06-17 …
2008年国际泳联跳水大奖赛罗斯托克站的比赛于北京时间6月9号落下帷幕。在为期三天的比赛中,以二队 2020-06-22 …
如果一届排球赛中有20个参赛队,分别是A队,B队,C队……T队.第一阶段比赛将参赛队分四组,用分组 2020-06-28 …
2002年韩日世界杯足球赛,参赛队球共32支,分成8个小组,每个小组4支球队进行单循环赛,各组前两 2020-07-01 …
填写合适的四字成语.一年一度的拔河比赛就要开始了,操场上早已().参赛队员个个(),两边的啦啦队也 2020-07-04 …
某项比赛规则是:先进行个人赛,每支参赛队的成绩前三名队员再代表本队进行团体赛,团体赛是在两队名次相同 2020-12-06 …
一次排球友谊赛,参赛队中每两队都要赛场若此次友谊赛共66场,则本次参赛球队有()A.14队B.13队 2021-01-09 …