早教吧作业答案频道 -->数学-->
(2014•洛阳二模)如图1,等腰直角△ABC中,AB=AC,∠BAC=90°,将一块三角板中含45°角的顶点放在A上,从AB边开始绕点A逆时针旋转一个角α,其中三角板斜边所在的直线交直线BC于点D,直角边
题目详情
(2014•洛阳二模)如图1,等腰直角△ABC中,AB=AC,∠BAC=90°,将一块三角板中含45°角的顶点放在A上,从AB边开始绕点A逆时针旋转一个角α,其中三角板斜边所在的直线交直线BC于点D,直角边所在的直线交直线BC于点E.
(1)操作发现:在线段BC上取一点M,连接AM,若AD平分∠BAM,则∠MAE与∠EAC的数量关系是______.
(2)猜想论证:当0°<α<45°时,线段BD、CE、DE之间存在如下等量关系:BD2+CE2=DE2.小颖和小亮想出了两种不同的方法进行解决:
小颖的想法:将△ABD沿AD所在的直线对折得到△ADF,连接EF(如图2);
小亮的想法:将△ABD绕点A顺时针旋转90°得到△ACG,连接EG(如图3);
请你从中任选一种方法进行证明;
(3)拓展探究:继续旋转三角板,当135°<α<180°时(如图4),试探究线段BD、CE、DE之间的关系,请直接写出写出结论.

(1)操作发现:在线段BC上取一点M,连接AM,若AD平分∠BAM,则∠MAE与∠EAC的数量关系是______.
(2)猜想论证:当0°<α<45°时,线段BD、CE、DE之间存在如下等量关系:BD2+CE2=DE2.小颖和小亮想出了两种不同的方法进行解决:
小颖的想法:将△ABD沿AD所在的直线对折得到△ADF,连接EF(如图2);
小亮的想法:将△ABD绕点A顺时针旋转90°得到△ACG,连接EG(如图3);
请你从中任选一种方法进行证明;
(3)拓展探究:继续旋转三角板,当135°<α<180°时(如图4),试探究线段BD、CE、DE之间的关系,请直接写出写出结论.

▼优质解答
答案和解析
(1)证明:如图1,∵∠BAC=90°,
∴∠BAD+∠DAM+∠MAE+∠EAC=90°.
∵∠DAE=45°,
∴∠BAD+∠EAC=45°.
∵∠BAD=∠DAM,
∴∠BAD+∠EAC=∠DAM+∠EAC=45°,
∴∠BAD+∠MAE=∠DAM+∠EAC,
∴∠MAE=∠EAC;
(2)选择小颖的方法.
证明:如图2,连接EF.
由折叠可知,∠BAD=∠FAD,AB=AF,BD=DF,
∵∠BAD=∠FAD,
∴由(1)可知,∠CAE=∠FAE.
在△AEF和△AEC中,
,
∴△AEF≌△AEC(SAS),
∴CE=FE,∠AFE=∠C=45°.
∴∠DFE=∠AFD+∠AFE=90°.
在Rt△DFE中,DF2+FE2=DE2,
∴BD2+CE2=DE2.
(3)当135°<α<180°时,等量关系BD2+CE2=DE2仍然成立.证明如下:
如图4,按小颖的方法作图,设AB与EF相交于点G.
∵将△ABD沿AD所在的直线对折得到△ADF,
∴AF=AB,∠AFD=∠ABD=135°,∠BAD=∠FAD.
又∵AC=AB,∴AF=AC.
又∵∠CAE=90°-∠BAE=90°-(45°-∠BAD)=45°+∠BAD=45°+∠FAD=∠FAE.
∴∠CAE=∠FAE.
在△AEF和△AEC中,
∵
,
∴△AEF≌△AEC(SAS),
∴CE=FE,∠AFE=∠C=45°.
∴∠DFE=∠AFD-∠AFE=∠135°-∠C=135°-45°=90°.
∴∠DFE=90°.
在Rt△DFE中,DF2+FE2=DE2,
∴BD2+CE2=DE2.
∴∠BAD+∠DAM+∠MAE+∠EAC=90°.∵∠DAE=45°,
∴∠BAD+∠EAC=45°.
∵∠BAD=∠DAM,
∴∠BAD+∠EAC=∠DAM+∠EAC=45°,
∴∠BAD+∠MAE=∠DAM+∠EAC,
∴∠MAE=∠EAC;
(2)选择小颖的方法.
证明:如图2,连接EF.

由折叠可知,∠BAD=∠FAD,AB=AF,BD=DF,
∵∠BAD=∠FAD,
∴由(1)可知,∠CAE=∠FAE.
在△AEF和△AEC中,
|
∴△AEF≌△AEC(SAS),
∴CE=FE,∠AFE=∠C=45°.
∴∠DFE=∠AFD+∠AFE=90°.
在Rt△DFE中,DF2+FE2=DE2,
∴BD2+CE2=DE2.
(3)当135°<α<180°时,等量关系BD2+CE2=DE2仍然成立.证明如下:
如图4,按小颖的方法作图,设AB与EF相交于点G.
∵将△ABD沿AD所在的直线对折得到△ADF,
∴AF=AB,∠AFD=∠ABD=135°,∠BAD=∠FAD.
又∵AC=AB,∴AF=AC.
又∵∠CAE=90°-∠BAE=90°-(45°-∠BAD)=45°+∠BAD=45°+∠FAD=∠FAE.

∴∠CAE=∠FAE.
在△AEF和△AEC中,
∵
|
∴△AEF≌△AEC(SAS),
∴CE=FE,∠AFE=∠C=45°.
∴∠DFE=∠AFD-∠AFE=∠135°-∠C=135°-45°=90°.
∴∠DFE=90°.
在Rt△DFE中,DF2+FE2=DE2,
∴BD2+CE2=DE2.
看了(2014•洛阳二模)如图1,...的网友还看了以下:
钝角可不可以是第三象限的角如果逆时针画角的话,钝角的确不能是第三象限的角,但是如果是顺时针画角的话 2020-04-27 …
1.已知长方体ABCD-A1B1C1D1中,AB=4,BC=CC1=3,E是AB的中点,求异面直线 2020-05-04 …
判断是否成比例,成什么比例半径一定,圆心角的度数和扇形面积圆的半径和面积应用题比例尺1:30000 2020-05-12 …
在长和宽分别是a,b的矩形纸片的四个角都减去一个边长为x的正方形,折起来做成一个没有盖的盒子(1) 2020-05-13 …
从《婚姻法》的角度来看,贾宝玉与薛宝钗属于近亲,也是不能结婚的,其原因是[]A.二人的遗传基因完全 2020-05-15 …
正方体ABCD-A'B'C'D',E、F分别是AD、AA的中点 求:直线AB'和EF所成的角的大小 2020-05-16 …
在平面直角坐标系xOy中,矩形OABC的顶点B的坐标为(8,7),A点在y轴上,C点在x轴上.动点 2020-05-20 …
(1)相等且互补的两个角都是直角;(2)两个角互补,则它们的角平分线互相垂直(3)两个角互为邻补角 2020-05-24 …
在直角坐标系中,已知线段AB,点A的坐标为(1,-2),点B的坐标为(3,0),如图1所示.(1) 2020-06-14 …
(1)相等且互补的两个角都是直角;(2)两个角互补,则它们的角平分线互相垂直(3)两个角互为邻补角 2020-06-18 …