早教吧作业答案频道 -->数学-->
求所有的三角函数各种关系的公式,越多越好
题目详情
求所有的三角函数各种关系的公式,越多越好
▼优质解答
答案和解析
三角函数公式
1. 同角三角函数的基本关系:
倒数关系:tanα •cotα=1 sinα •cscα=1 cosα •secα=1
商的关系:sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα
平方关系:sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)
平常针对不同条件的常用的两个公式:sin² α+cos² α=1 tan α *cot α=1
2. 一个特殊公式:(sina+sinθ)*(sina+sinθ)=sin(a+θ)*sin(a-θ)
证明:(sina+sinθ)*(sina+sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ)
3. 锐角三角函数公式
正弦: sin α=∠α的对边/∠α 的斜边
余弦:cos α=∠α的邻边/∠α的斜边
正切:tan α=∠α的对边/∠α的邻边
余切:cot α=∠α的邻边/∠α的对边
4. 二倍角公式
正弦sin2A=2sinA•cosA
余弦 1.Cos2a=Cos^2(a)-Sin^2(a) =2Cos^2(a)-1 =1-2Sin^2(a)
2.Cos2a=1-2Sin^2(a)
3.Cos2a=2Cos^2(a)-1
正切 tan2A=(2tanA)/(1-tan^2(A))
5. 三倍角公式
sin3α=4sinα•sin(π/3+α)sin(π/3-α)
cos3α=4cosα•cos(π/3+α)cos(π/3-α)
tan3a = tan a • tan(π/3+a)• tan(π/3-a)
6. n倍角公式
sin(n a)=Rsina sin(a+π/n)……sin(a+(n-1)π/n). 其中R=2^(n-1)
7. 半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.
sin^2(a/2)=(1-cos(a))/2;cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
8. 和差化积
sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]
sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]
cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]
cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
9. 两角和公式
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ -cosαsinβ
10. 积化和差
sinαsinβ = [cos(α-β)-cos(α+β)] /2
cosαcosβ = [cos(α+β)+cos(α-β)]/2
sinαcosβ = [sin(α+β)+sin(α-β)]/2
cosαsinβ = [sin(α+β)-sin(α-β)]/2
11. 双曲函数
sinh(a) = [e^a-e^(-a)]/2
cosh(a) = [e^a+e^(-a)]/2
tanh(a) = sin h(a)/cos h(a)
公式一:设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot(2kπ+α)= cotα
公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα
公式三:任意角α与 -α的三角函数值之间的关系: sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα
公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα
公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα
公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)= cosα cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan(π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα (以上k∈Z) A•sin(ωt+θ)+ B•sin(ωt+φ) = √{(A² +B² +2ABcos(θ-φ)} • sin{ ωt + arcsin[ (A•sinθ+B•sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} } √表示根号,包括{……}中的内容
12. 诱导公式
sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα
sin(π/2-α) = cosα cos(π/2-α) = sinα
sin(π/2+α) = cosα cos(π/2+α) = -sinα
sin(π-α) = sinα cos(π-α) = -cosα
sin(π+α) = -sinα cos(π+α) = -cosα
tanA= sinA/cosA tan(π/2+α)=-cotα tan(π/2-α)=cotα tan(π-α)=-tanα tan(π+α)=tanα 诱导公式记背诀窍:奇变偶不变,符号看象限
13. 万能公式
sinα=2tan(α/2)/[1+(tan(α/2))²]
cosα=[1-(tan(α/2))²]/[1+(tan(α/2))²]
tanα=2tan(α/2)/[1-(tan(α/2))²]
14. 其它公式
(1) (sinα)²+(cosα)²=1
(2)1+(tanα)²=(secα)²
(3)1+(cotα)²=(cscα)² 证明下面两式,只需将一式,左右同除(sinα)²,第二个除(cosα)²即可.
(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC
(5)cotAcotB+cotAcotC+cotBcotC=1
(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)
(7)(cosA)²+(cosB)²+(cosC)²=1-2cosAcosBcosC
(8)(sinA)²+(sinB)²+(sinC)²=2+2cosAcosBcosC
其他非重点三角函数 csc(a) = 1/sin(a) sec(a) = 1/cos(a)
15. 两角和公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
1. 同角三角函数的基本关系:
倒数关系:tanα •cotα=1 sinα •cscα=1 cosα •secα=1
商的关系:sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα
平方关系:sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)
平常针对不同条件的常用的两个公式:sin² α+cos² α=1 tan α *cot α=1
2. 一个特殊公式:(sina+sinθ)*(sina+sinθ)=sin(a+θ)*sin(a-θ)
证明:(sina+sinθ)*(sina+sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ)
3. 锐角三角函数公式
正弦: sin α=∠α的对边/∠α 的斜边
余弦:cos α=∠α的邻边/∠α的斜边
正切:tan α=∠α的对边/∠α的邻边
余切:cot α=∠α的邻边/∠α的对边
4. 二倍角公式
正弦sin2A=2sinA•cosA
余弦 1.Cos2a=Cos^2(a)-Sin^2(a) =2Cos^2(a)-1 =1-2Sin^2(a)
2.Cos2a=1-2Sin^2(a)
3.Cos2a=2Cos^2(a)-1
正切 tan2A=(2tanA)/(1-tan^2(A))
5. 三倍角公式
sin3α=4sinα•sin(π/3+α)sin(π/3-α)
cos3α=4cosα•cos(π/3+α)cos(π/3-α)
tan3a = tan a • tan(π/3+a)• tan(π/3-a)
6. n倍角公式
sin(n a)=Rsina sin(a+π/n)……sin(a+(n-1)π/n). 其中R=2^(n-1)
7. 半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.
sin^2(a/2)=(1-cos(a))/2;cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
8. 和差化积
sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]
sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]
cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]
cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
9. 两角和公式
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ -cosαsinβ
10. 积化和差
sinαsinβ = [cos(α-β)-cos(α+β)] /2
cosαcosβ = [cos(α+β)+cos(α-β)]/2
sinαcosβ = [sin(α+β)+sin(α-β)]/2
cosαsinβ = [sin(α+β)-sin(α-β)]/2
11. 双曲函数
sinh(a) = [e^a-e^(-a)]/2
cosh(a) = [e^a+e^(-a)]/2
tanh(a) = sin h(a)/cos h(a)
公式一:设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot(2kπ+α)= cotα
公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα
公式三:任意角α与 -α的三角函数值之间的关系: sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα
公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα
公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα
公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)= cosα cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan(π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα (以上k∈Z) A•sin(ωt+θ)+ B•sin(ωt+φ) = √{(A² +B² +2ABcos(θ-φ)} • sin{ ωt + arcsin[ (A•sinθ+B•sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} } √表示根号,包括{……}中的内容
12. 诱导公式
sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα
sin(π/2-α) = cosα cos(π/2-α) = sinα
sin(π/2+α) = cosα cos(π/2+α) = -sinα
sin(π-α) = sinα cos(π-α) = -cosα
sin(π+α) = -sinα cos(π+α) = -cosα
tanA= sinA/cosA tan(π/2+α)=-cotα tan(π/2-α)=cotα tan(π-α)=-tanα tan(π+α)=tanα 诱导公式记背诀窍:奇变偶不变,符号看象限
13. 万能公式
sinα=2tan(α/2)/[1+(tan(α/2))²]
cosα=[1-(tan(α/2))²]/[1+(tan(α/2))²]
tanα=2tan(α/2)/[1-(tan(α/2))²]
14. 其它公式
(1) (sinα)²+(cosα)²=1
(2)1+(tanα)²=(secα)²
(3)1+(cotα)²=(cscα)² 证明下面两式,只需将一式,左右同除(sinα)²,第二个除(cosα)²即可.
(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC
(5)cotAcotB+cotAcotC+cotBcotC=1
(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)
(7)(cosA)²+(cosB)²+(cosC)²=1-2cosAcosBcosC
(8)(sinA)²+(sinB)²+(sinC)²=2+2cosAcosBcosC
其他非重点三角函数 csc(a) = 1/sin(a) sec(a) = 1/cos(a)
15. 两角和公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
看了求所有的三角函数各种关系的公式...的网友还看了以下:
初三数学谢谢速度点△ABC中,AB=15,AC=13,高AD=12,求能完全覆盖△ABC的圆的最小 2020-04-27 …
请问哪位大侠有中学数学三角函数的各种关系式?最好有推导过程越多越好!最好是物理中计算会经常用到的! 2020-05-23 …
数学好的进来看一看耶小张的存钱罐里有2角,5角和1元人民币20张,共12元,每种人民币各几张?(最 2020-06-06 …
全等三角形SSA好像在同种三角形下是可以成立的,是么?(同种三角形是说都是锐角三角形或钝角三角形) 2020-06-27 …
一个幼稚的数学函数在三角形ABC中,已知角A的对边BC和邻边AB如何求角A的度数?最好有例子.LU 2020-07-05 …
转弯转的度数是外角还是内角就是在数学题中人或者是车什么的向左转多少度啦,向右转多少度啦,一直不清楚 2020-07-30 …
由三角函数反求角度的问题1如:sinQ=1/2要求Q的角度,范围在[-2派,2派]之间的所有值这种 2020-08-03 …
一个三角形中,角A的度数与角B的度数相加正好与角C度数相等,角A的度数是角C的三分之一,求角B的度数 2020-11-17 …
下面四句话,正确的一句是()A.一种商品打八折出售正好保本,则不打折时该商品只获20%的利润B.分母 2020-11-24 …
一小孩儿买了30块糖花了9元钱其中一种糖2角一块另一种5角一块问各买了几块?不用未知数给我算法我知道 2020-12-17 …