早教吧作业答案频道 -->数学-->
如图,AB为⊙O的直径,AD平分∠BAC交⊙O于点D,DE⊥AC交AC的延长线于点E,BF⊥AB交AD的延长线于点F,(1)求证:DE是⊙O的切线;(2)若DE=3,⊙O的半径为5,求BF的长.
题目详情
如图,AB为⊙O的直径,AD平分∠BAC交⊙O于点D,DE⊥AC交AC的延长线于点E,BF⊥AB交AD的延长
线于点F,
(1)求证:DE是⊙O的切线;
(2)若DE=3,⊙O的半径为5,求BF的长.
线于点F,(1)求证:DE是⊙O的切线;
(2)若DE=3,⊙O的半径为5,求BF的长.
▼优质解答
答案和解析
(1)证明:连OD,如图,
∵AD平分∠BAC,
∴∠1=∠2(等弦对等角),
又∵OD=OA,得∠2=∠3(等角对等边),
∴∠1=∠3(等量代换),
而DE⊥AC,
∴OD⊥DE,
∴DE是⊙O的切线;
(2)过D作DP⊥AB,P为垂足,
∵AD为∠BAC的平分线,DE=3,
∴DP=DE=3,又⊙O的半径为5,
在Rt△OPD中,OD=5,DP=3,得OP=4,则AP=9,
∵BF⊥AB,
∴DP∥FB,
∴
=
,即
=
,
∴BF=
.
(1)证明:连OD,如图,∵AD平分∠BAC,
∴∠1=∠2(等弦对等角),
又∵OD=OA,得∠2=∠3(等角对等边),
∴∠1=∠3(等量代换),
而DE⊥AC,
∴OD⊥DE,
∴DE是⊙O的切线;
(2)过D作DP⊥AB,P为垂足,
∵AD为∠BAC的平分线,DE=3,
∴DP=DE=3,又⊙O的半径为5,
在Rt△OPD中,OD=5,DP=3,得OP=4,则AP=9,
∵BF⊥AB,
∴DP∥FB,
∴
| DP |
| FB |
| AP |
| AB |
| 3 |
| BF |
| 9 |
| 10 |
∴BF=
| 10 |
| 3 |
看了如图,AB为⊙O的直径,AD平...的网友还看了以下:
如图 已知抛物线y=x2+bx+c与x轴交与A.B俩点【A在B点左侧】与y轴交与点C【0,-3】如 2020-05-16 …
抛物线y=x2+bx+c(b≤0)的图像与x轴交于A,B两点,与y轴交于点C,其中点A的坐标为(- 2020-06-03 …
已知集合A={(X,Y)丨2X-Y=0}B={(X.Y)丨3X+Y=0}C={(X,Y)丨2X-Y 2020-06-23 …
设集合A、B、C.我们知道集合满足分配律:(A交B)并C=(A并C)交(B并C)(A并B)交C=( 2020-06-23 …
二元一次方程组的交集和并集如何做例题:知己集合A={(x,y)|2x-y=0},B={(x,y)| 2020-07-29 …
已知集合A={(X,Y)|2X-Y=0},B={(X,Y)|3X+Y=0},C={(X,Y)2X- 2020-08-02 …
非常简单的立体几何问题直线a平行于平面α,直线b在平面α内,则Aa平行于bBab相交C.a和b平行 2020-08-02 …
三阶方阵A有三个特征值-1,1,2且方阵A与方阵B有相同的特征值,则不正确的是A:A与B等价B:三阶 2020-11-03 …
图为我国某地区等高线地形图(图中河水自东向西流),读图,回答以下问题。1.图中正确表示河谷发育位置的 2020-12-08 …
从出发点到鸡冠山,路途最短是A线,但是一旅行团却选择了B线,这是因为()A.山脊较为安全,且山谷不能 2020-12-27 …