早教吧作业答案频道 -->其他-->
定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x0<b),满足f(x0)=f(b)-f(a)b-a,则称函数y=f(x)是[a,b]上的“平均值函数”,x0是它的一个均值点.例如y=|x|是[-2,2]上的“
题目详情
定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x0<b),满足f(x0)=
,则称函数y=f(x)是[a,b]上的“平均值函数”,x0是它的一个均值点.例如y=|x|是[-2,2]上的“平均值函数”,0就是它的均值点.给出以下命题:
①函数f(x)=cosx-1是[-2π,2π]上的“平均值函数”;
②若y=f(x)是[a,b]上的“平均值函数”,则它的均值点x0≥
;
③若函数f(x)=x2-mx-1是[-1,1]上的“平均值函数”,则实数m的取值范围是m∈(0,2);
④若f(x)=lnx是区间[a,b](b>a≥1)上的“平均值函数”,x0是它的一个均值点,则lnx0<
.
其中的真命题有______.(写出所有真命题的序号)
f(b)-f(a) |
b-a |
①函数f(x)=cosx-1是[-2π,2π]上的“平均值函数”;
②若y=f(x)是[a,b]上的“平均值函数”,则它的均值点x0≥
a+b |
2 |
③若函数f(x)=x2-mx-1是[-1,1]上的“平均值函数”,则实数m的取值范围是m∈(0,2);
④若f(x)=lnx是区间[a,b](b>a≥1)上的“平均值函数”,x0是它的一个均值点,则lnx0<
1 | ||
|
其中的真命题有______.(写出所有真命题的序号)
▼优质解答
答案和解析
①容易证明正确.函数f(x)=cosx-1是[-2π,2π]上的“平均值函数”;-1就是它的均值点.②不正确.反例:f(x)=x在区间[0,6]上.③正确.由定义:x02-mx0-1=-m-m2得x02-1=(x0-1)m⇒m=x0+1,又x0∈(-1,1)所以...
看了定义:如果函数y=f(x)在定...的网友还看了以下:
导数,极限,切线斜率方面混淆问题f(x)在x0点的导数=limx趋向于x0[f(x)-f(x0)] 2020-04-09 …
m≦f'(x)≦M李永乐在真题中讲到微分中直定理时有这么一个公式他是社么呢?注意是f'(x)不是f 2020-05-13 …
已知函数f(x)及其导数f′(x),若存在x0,使得f′(x0)=f(x0),则称x0是f(x)的 2020-05-14 …
若f(x,y)在(x0,y0)点有一阶偏导数,则()Af(x,y)在(x0,y0)必连续Bf(x, 2020-05-14 …
求解一道关于导数的题f(x)在点x0处满足f(x0)的一阶导数等于二阶导数等于0 并且f(x0)的 2020-05-17 …
泰勒公式:f(x)=f(x0)+f'(x0)(x-x0)+[f''(x0)/2!]*(x-x0)^ 2020-05-17 …
谢谢各位大神~~设f(x)在x0的某一领域内有定义,且lim(x→x0)[f(x)-f(x0)]/ 2020-05-17 …
曲线y=f(x)在点(x0,y0)的法线方程是(?)Ay-y0=f(x0)(x-x0)By-y0= 2020-05-17 …
若f(x)在x0点处二阶可导,且lim[(f(x)-f(x0))/(x-x0)^2]=1,x趋近于 2020-05-17 …
设f(x)在点x=x0处可导,且f′(x0)=-2,则lim(△x->∞)(f(x0-f(X0-△ 2020-06-03 …