早教吧作业答案频道 -->其他-->
如图,在平面直角坐标系中,A(-1,0),B(4,0),C(0,2),连接AC、BC.(1)试说明:∠ACB=90°;(2)在第一象限内是否存在点P,使得以P、B、C为顶点的三角形与△AOC相似?若存在,请
题目详情

(1)试说明:∠ACB=90°;
(2)在第一象限内是否存在点P,使得以P、B、C为顶点的三角形与△AOC相似?若存在,请写出所有符合条件的点P的坐标;若不存在,请说明理由.
▼优质解答
答案和解析
(1)证明:如图1,
∵A(-1,0),B(4,0),C(0,2),
∴CO=2,AO=1,BO=4,
∴
=
=
,
∵∠AOC=∠BOC=90°,
∴△AOC∽△COB,
∴∠1=∠OBC,
∴∠1+∠2=90°,
即∠ACB=90°;
(2)①当△P1CB∽△OCA时,
∴∠P1CB=∠ACO,∠P1BC=∠CAO,
∴P1C∥BO,P1B∥CO,
∴四边形P1BOC是平行四边形,
又∵∠COB=90°,
∴平行四边形P1BOC是矩形,
∴P1B=CO=2,P1C=BO=4,
∴P1点坐标为:(4,2),
②过点P2,作P2D⊥BO于点D,
当△P2CB∽△ACO时,
∴
=
,
∵AO=1,CO=2,BC=
=2
,
∴
=
,
解得:P2B=
,
∵∠CBP2=90°,
∴∠CBO+∠P2BD=90°,
∵∠BP2D+∠P2BD=90°,
∴∠CBO=∠BP2D,
∵∠COB=∠BDP2,
∴△COB∽△BDP2,
∴△AOC∽△BDP2,
∴
=
=
,
设BD=x,则DP 2=2x,
∴x 2+(2x) 2=(
) 2,
解得:x=1,
∴BD=1,DP 2=2,
∴P2点坐标为:(5,2),
③当△P3CB∽△AOC时,
由②同理即可得出:P3点坐标为:(1,4),
④过点P4,作P4M⊥CO于点M,P4N⊥BO于点N,
当△P4CB∽△OAC时,
∴
=
,
∴
=
,
∴P4C=2,
则P4B=4,
设P4的坐标为:(x,y),
∴MC=y-2,P4M=x,BN=4-x,P4N=y,
∴
,
可得y=2x,
∴(2x)2+(4-x)2=16,
解得:x=
或x=0(不合题意舍去),
故y=
,
P4的坐标为:(
,
),
⑤当△AOC∽△BCP5时,P5的坐标是:(4,10);
⑥当△AOC∽△P6BC,时,P6的坐标是:(8,8);
综上所述P点坐标为:(4,2),(5,2),(1,4),(
,
)(4,10)(8,8).

∵A(-1,0),B(4,0),C(0,2),
∴CO=2,AO=1,BO=4,
∴
CO |
BO |
AO |
CO |
1 |
2 |
∵∠AOC=∠BOC=90°,
∴△AOC∽△COB,
∴∠1=∠OBC,
∴∠1+∠2=90°,
即∠ACB=90°;
(2)①当△P1CB∽△OCA时,
∴∠P1CB=∠ACO,∠P1BC=∠CAO,
∴P1C∥BO,P1B∥CO,
∴四边形P1BOC是平行四边形,
又∵∠COB=90°,
∴平行四边形P1BOC是矩形,
∴P1B=CO=2,P1C=BO=4,
∴P1点坐标为:(4,2),
②过点P2,作P2D⊥BO于点D,
当△P2CB∽△ACO时,
∴
P2B |
AO |
BC |
CO |
∵AO=1,CO=2,BC=
22+42 |
5 |
∴
P2B |
1 |
2
| ||
2 |
解得:P2B=
5 |
∵∠CBP2=90°,
∴∠CBO+∠P2BD=90°,
∵∠BP2D+∠P2BD=90°,
∴∠CBO=∠BP2D,
∵∠COB=∠BDP2,
∴△COB∽△BDP2,
∴△AOC∽△BDP2,
∴
BD |
P2D |
AO |
CO |
1 |
2 |
设BD=x,则DP 2=2x,

∴x 2+(2x) 2=(
5 |
解得:x=1,
∴BD=1,DP 2=2,
∴P2点坐标为:(5,2),
③当△P3CB∽△AOC时,
由②同理即可得出:P3点坐标为:(1,4),
④过点P4,作P4M⊥CO于点M,P4N⊥BO于点N,
当△P4CB∽△OAC时,
∴
P4C |
AO |
BC |
AC |
∴
P4C |
1 |
2
| ||
|
∴P4C=2,
则P4B=4,
设P4的坐标为:(x,y),
∴MC=y-2,P4M=x,BN=4-x,P4N=y,
∴
|
可得y=2x,
∴(2x)2+(4-x)2=16,
解得:x=
8 |
5 |
故y=
16 |
5 |
P4的坐标为:(
8 |
5 |
16 |
5 |
⑤当△AOC∽△BCP5时,P5的坐标是:(4,10);
⑥当△AOC∽△P6BC,时,P6的坐标是:(8,8);
综上所述P点坐标为:(4,2),(5,2),(1,4),(
8 |
5 |
16 |
5 |
看了如图,在平面直角坐标系中,A(...的网友还看了以下:
请问:CeO2和La2O3,是什么金属元素?存在于哪些物质中?就是在大自然当中,那一种物质含有这种 2020-04-09 …
两圆相离指外离还是指外离内含同是人教版教科书,初中九年级上册书里讲两圆相离包括外离和内含,现在高中 2020-07-13 …
两圆相离指外离还是指外离内含同是人教版教科书,初中九年级上册书里讲两圆相离包括外离和内含,现在高中 2020-07-26 …
如图所示,平面直角坐标系xOy中,在y>0的区域存在沿y轴负方向的匀强电场,场强大小为E.在-h< 2020-07-31 …
中国人民银行于2007年5月18日调整居民存款利率,一年定期存款利率由原来的2.8%上升到3.1%, 2020-11-06 …
相反数问题?下面这道题我不知道该怎么做:推理:(1)由书中知识,+5的相反数是-5,-5的相反数是5 2020-11-06 …
英国科学家麦克斯韦预言世界上存在着电磁波,后经德国物理学家赫兹实验证实。这印证了()A.思维和存在具 2020-11-23 …
英语翻译一号存款是存单,存满一年后在2012年12月9日再次转存了一年的定期,所以这笔定期存款实际存 2020-11-28 …
选出与“越陌度阡,枉用相存”中的“存”意义相同的一项()A.则胜负之数,存亡之理,当与秦相较,或未易 2020-11-29 …
x星到底存不存在,那冥王星怎么解释?木星与土星中的轨道怎么解释?x星,不是什么,只是它存在过没有,现 2020-12-16 …