早教吧作业答案频道 -->其他-->
如图,在平面直角坐标系中,A(-1,0),B(4,0),C(0,2),连接AC、BC.(1)试说明:∠ACB=90°;(2)在第一象限内是否存在点P,使得以P、B、C为顶点的三角形与△AOC相似?若存在,请
题目详情

(1)试说明:∠ACB=90°;
(2)在第一象限内是否存在点P,使得以P、B、C为顶点的三角形与△AOC相似?若存在,请写出所有符合条件的点P的坐标;若不存在,请说明理由.
▼优质解答
答案和解析
(1)证明:如图1,
∵A(-1,0),B(4,0),C(0,2),
∴CO=2,AO=1,BO=4,
∴
=
=
,
∵∠AOC=∠BOC=90°,
∴△AOC∽△COB,
∴∠1=∠OBC,
∴∠1+∠2=90°,
即∠ACB=90°;
(2)①当△P1CB∽△OCA时,
∴∠P1CB=∠ACO,∠P1BC=∠CAO,
∴P1C∥BO,P1B∥CO,
∴四边形P1BOC是平行四边形,
又∵∠COB=90°,
∴平行四边形P1BOC是矩形,
∴P1B=CO=2,P1C=BO=4,
∴P1点坐标为:(4,2),
②过点P2,作P2D⊥BO于点D,
当△P2CB∽△ACO时,
∴
=
,
∵AO=1,CO=2,BC=
=2
,
∴
=
,
解得:P2B=
,
∵∠CBP2=90°,
∴∠CBO+∠P2BD=90°,
∵∠BP2D+∠P2BD=90°,
∴∠CBO=∠BP2D,
∵∠COB=∠BDP2,
∴△COB∽△BDP2,
∴△AOC∽△BDP2,
∴
=
=
,
设BD=x,则DP 2=2x,
∴x 2+(2x) 2=(
) 2,
解得:x=1,
∴BD=1,DP 2=2,
∴P2点坐标为:(5,2),
③当△P3CB∽△AOC时,
由②同理即可得出:P3点坐标为:(1,4),
④过点P4,作P4M⊥CO于点M,P4N⊥BO于点N,
当△P4CB∽△OAC时,
∴
=
,
∴
=
,
∴P4C=2,
则P4B=4,
设P4的坐标为:(x,y),
∴MC=y-2,P4M=x,BN=4-x,P4N=y,
∴
,
可得y=2x,
∴(2x)2+(4-x)2=16,
解得:x=
或x=0(不合题意舍去),
故y=
,
P4的坐标为:(
,
),
⑤当△AOC∽△BCP5时,P5的坐标是:(4,10);
⑥当△AOC∽△P6BC,时,P6的坐标是:(8,8);
综上所述P点坐标为:(4,2),(5,2),(1,4),(
,
)(4,10)(8,8).

∵A(-1,0),B(4,0),C(0,2),
∴CO=2,AO=1,BO=4,
∴
CO |
BO |
AO |
CO |
1 |
2 |
∵∠AOC=∠BOC=90°,
∴△AOC∽△COB,
∴∠1=∠OBC,
∴∠1+∠2=90°,
即∠ACB=90°;
(2)①当△P1CB∽△OCA时,
∴∠P1CB=∠ACO,∠P1BC=∠CAO,
∴P1C∥BO,P1B∥CO,
∴四边形P1BOC是平行四边形,
又∵∠COB=90°,
∴平行四边形P1BOC是矩形,
∴P1B=CO=2,P1C=BO=4,
∴P1点坐标为:(4,2),
②过点P2,作P2D⊥BO于点D,
当△P2CB∽△ACO时,
∴
P2B |
AO |
BC |
CO |
∵AO=1,CO=2,BC=
22+42 |
5 |
∴
P2B |
1 |
2
| ||
2 |
解得:P2B=
5 |
∵∠CBP2=90°,
∴∠CBO+∠P2BD=90°,
∵∠BP2D+∠P2BD=90°,
∴∠CBO=∠BP2D,
∵∠COB=∠BDP2,
∴△COB∽△BDP2,
∴△AOC∽△BDP2,
∴
BD |
P2D |
AO |
CO |
1 |
2 |
设BD=x,则DP 2=2x,

∴x 2+(2x) 2=(
5 |
解得:x=1,
∴BD=1,DP 2=2,
∴P2点坐标为:(5,2),
③当△P3CB∽△AOC时,
由②同理即可得出:P3点坐标为:(1,4),
④过点P4,作P4M⊥CO于点M,P4N⊥BO于点N,
当△P4CB∽△OAC时,
∴
P4C |
AO |
BC |
AC |
∴
P4C |
1 |
2
| ||
|
∴P4C=2,
则P4B=4,
设P4的坐标为:(x,y),
∴MC=y-2,P4M=x,BN=4-x,P4N=y,
∴
|
可得y=2x,
∴(2x)2+(4-x)2=16,
解得:x=
8 |
5 |
故y=
16 |
5 |
P4的坐标为:(
8 |
5 |
16 |
5 |
⑤当△AOC∽△BCP5时,P5的坐标是:(4,10);
⑥当△AOC∽△P6BC,时,P6的坐标是:(8,8);
综上所述P点坐标为:(4,2),(5,2),(1,4),(
8 |
5 |
16 |
5 |
看了如图,在平面直角坐标系中,A(...的网友还看了以下:
还是lingo问题road(country,country):length,xie,c;endse 2020-05-13 …
快,急.已知坐标系平面内的三个点A(1,3)B(3,1)O(0,0),求出三角形ABO的面积.快, 2020-05-16 …
ansys直接建立有限元模型问题finish/clear/prep7n,1,0,0,0n,2,0, 2020-05-17 …
三角形ABO的三个顶点的坐标分别为(12,0),(8,8),(0,0),矩形CDEF是其内接矩形, 2020-06-03 …
求解一道向量函数题(只需简要思路)三角形ABO(O是坐标原点)的顶点A在x正半轴上,顶点B在第一象 2020-06-07 …
若“*”是一个对于1和0的新运算符号,且运算规则如下:1*1=0,1*0=0,0*1=1,0*0= 2020-07-26 …
有个excel函数问题想请教、当B1>0时候判定A1是否大于0若大于0则H1等于0若小于0则等于1 2020-07-30 …
关于幂函数的问题设f(x)=下面这个是分段函数:x^acos(1/x),若x≠0,0,若x=0.从 2020-08-01 …
已知关于x的方程x²-(2k+1)x+4(k-1/2)=0若等腰三角形一边长a=4已知关于x的方程 2020-08-02 …
(2012•永州)如图,一枚棋子放在七角棋盘的第0号角,现依逆时针方向移动这枚棋子,其各步依次移动1 2020-11-12 …