早教吧作业答案频道 -->数学-->
如图,在边长为4的正方形ABCD中,以AD为直径作⊙O,以C为圆心,CD长为半径作⊙C,两圆交于正方形内一点E,连CE并延长交AB于F.(1)求证:CF与⊙O相切.(2)求△BCF和直角梯形ADCF的周长之
题目详情
如图,在边长为4的正方形ABCD中,以AD为直径作⊙O,以C为圆心,CD长为半径作⊙C,两圆交于正方形内一点E,连CE并延长交AB于F.

(1)求证:CF与⊙O相切.
(2)求△BCF和直角梯形ADCF的周长之比.

(1)求证:CF与⊙O相切.
(2)求△BCF和直角梯形ADCF的周长之比.
▼优质解答
答案和解析
(1)证明:
连接OE,DE,
∵OD=OE,CE=CD,
∴∠ODE=∠OED,∠CDE=∠CED,
∵四边形ABCD是正方形,
∴∠ADC=90°,
∴∠ADC=∠ODE+∠CDE=90°,
∴∠OED+∠CED=90°,
即OE⊥CF,
∵OE为半径,
∴CF与⊙O相切.
(2)
过F作FM⊥DC于M,
∵四边形ABCD是正方形,
∴AD=DC=BC=AB=CE=4,∠FAD=∠ADM=∠FMD=∠FMC=90°,
∴四边形ADMF是矩形,
∴AD=FM=4,AF=DM
∵∠OAF=90°,OA为半径,
∴AF切⊙O于A,CF切⊙O于E,
∴AF=EF,
设AF=EF=x,DM=x,
在Rt△FMC中,由勾股定理得:FM2+MC2=CF2,
42+(4-x)2=(4+x)2,
x=1,
∴AF=EF=DM=1,
∴CF=4+1=5,
∴△BCF的周长是BC+CF+BF=4+5+4-1=12,
直角梯形ADCF的周长是AD+DC+CF+AF=4+4+5+1=14,
∴△BCF和直角梯形ADCF的周长之比是12:14=6:7.

连接OE,DE,
∵OD=OE,CE=CD,
∴∠ODE=∠OED,∠CDE=∠CED,
∵四边形ABCD是正方形,
∴∠ADC=90°,
∴∠ADC=∠ODE+∠CDE=90°,
∴∠OED+∠CED=90°,
即OE⊥CF,
∵OE为半径,
∴CF与⊙O相切.
(2)

过F作FM⊥DC于M,
∵四边形ABCD是正方形,
∴AD=DC=BC=AB=CE=4,∠FAD=∠ADM=∠FMD=∠FMC=90°,
∴四边形ADMF是矩形,
∴AD=FM=4,AF=DM
∵∠OAF=90°,OA为半径,
∴AF切⊙O于A,CF切⊙O于E,
∴AF=EF,
设AF=EF=x,DM=x,
在Rt△FMC中,由勾股定理得:FM2+MC2=CF2,
42+(4-x)2=(4+x)2,
x=1,
∴AF=EF=DM=1,
∴CF=4+1=5,
∴△BCF的周长是BC+CF+BF=4+5+4-1=12,
直角梯形ADCF的周长是AD+DC+CF+AF=4+4+5+1=14,
∴△BCF和直角梯形ADCF的周长之比是12:14=6:7.
看了如图,在边长为4的正方形ABC...的网友还看了以下:
如图,在棱长为a的正方体oabc-o'a'b'c'中,E,F分别是棱AB,BC上的动点,且AE=B 2020-05-16 …
a o c s e组成单词 2020-05-16 …
A.根据释义,拼写单词.1.costingalotofmoneyx,p,s,i,e,e,e,n,v 2020-06-10 …
选择元音字母在单词中发音不同的一项.1;A:h(a)nd;B:f(a)ce;C:(a)pple.2 2020-06-17 …
英语单词填空1.时间状语:d-r-n-2.场所:b-s-s-o-f-r--e-a-t-e-t3.教 2020-07-14 …
如图,已知AB是圆O的直径,点C、D在圆O上,点E在圆O外,角EAC=角D=60°(1)求证:A如 2020-07-31 …
点A.B.C.D.E在圆上,且弧AB=弧BC=弧CD=弧DE=弧EA,求证五边形ABCDE是圆O点 2020-08-03 …
排列成正确的句子:me,I,go,excuse,haveto.排列成正确的单词:1.c,d,e,s, 2020-11-01 …
已知:AB为⊙O的直径,C是⊙O外一点,BC交⊙O于点E,AC交⊙O于点D,∠DOE=60º.求∠C 2020-11-27 …
同济6版高数上册P310页正文倒数第五行括号中说C=正负e的C1次方,但c=O不也是方程的通解吗?. 2020-11-28 …