早教吧作业答案频道 -->数学-->
如图,在边长为4的正方形ABCD中,以AD为直径作⊙O,以C为圆心,CD长为半径作⊙C,两圆交于正方形内一点E,连CE并延长交AB于F.(1)求证:CF与⊙O相切.(2)求△BCF和直角梯形ADCF的周长之
题目详情
如图,在边长为4的正方形ABCD中,以AD为直径作⊙O,以C为圆心,CD长为半径作⊙C,两圆交于正方形内一点E,连CE并延长交AB于F.

(1)求证:CF与⊙O相切.
(2)求△BCF和直角梯形ADCF的周长之比.

(1)求证:CF与⊙O相切.
(2)求△BCF和直角梯形ADCF的周长之比.
▼优质解答
答案和解析
(1)证明:
连接OE,DE,
∵OD=OE,CE=CD,
∴∠ODE=∠OED,∠CDE=∠CED,
∵四边形ABCD是正方形,
∴∠ADC=90°,
∴∠ADC=∠ODE+∠CDE=90°,
∴∠OED+∠CED=90°,
即OE⊥CF,
∵OE为半径,
∴CF与⊙O相切.
(2)
过F作FM⊥DC于M,
∵四边形ABCD是正方形,
∴AD=DC=BC=AB=CE=4,∠FAD=∠ADM=∠FMD=∠FMC=90°,
∴四边形ADMF是矩形,
∴AD=FM=4,AF=DM
∵∠OAF=90°,OA为半径,
∴AF切⊙O于A,CF切⊙O于E,
∴AF=EF,
设AF=EF=x,DM=x,
在Rt△FMC中,由勾股定理得:FM2+MC2=CF2,
42+(4-x)2=(4+x)2,
x=1,
∴AF=EF=DM=1,
∴CF=4+1=5,
∴△BCF的周长是BC+CF+BF=4+5+4-1=12,
直角梯形ADCF的周长是AD+DC+CF+AF=4+4+5+1=14,
∴△BCF和直角梯形ADCF的周长之比是12:14=6:7.

连接OE,DE,
∵OD=OE,CE=CD,
∴∠ODE=∠OED,∠CDE=∠CED,
∵四边形ABCD是正方形,
∴∠ADC=90°,
∴∠ADC=∠ODE+∠CDE=90°,
∴∠OED+∠CED=90°,
即OE⊥CF,
∵OE为半径,
∴CF与⊙O相切.
(2)

过F作FM⊥DC于M,
∵四边形ABCD是正方形,
∴AD=DC=BC=AB=CE=4,∠FAD=∠ADM=∠FMD=∠FMC=90°,
∴四边形ADMF是矩形,
∴AD=FM=4,AF=DM
∵∠OAF=90°,OA为半径,
∴AF切⊙O于A,CF切⊙O于E,
∴AF=EF,
设AF=EF=x,DM=x,
在Rt△FMC中,由勾股定理得:FM2+MC2=CF2,
42+(4-x)2=(4+x)2,
x=1,
∴AF=EF=DM=1,
∴CF=4+1=5,
∴△BCF的周长是BC+CF+BF=4+5+4-1=12,
直角梯形ADCF的周长是AD+DC+CF+AF=4+4+5+1=14,
∴△BCF和直角梯形ADCF的周长之比是12:14=6:7.
看了如图,在边长为4的正方形ABC...的网友还看了以下:
已知图中正方形的两个顶点正好是两个等腰直角三角形斜边上的中点,小等腰直角三角形与正方形中的圆面积相 2020-05-14 …
锐角三角形的题目!锐角三角形中,E、F为AB、AC边上的点,把三角形ABC按着直线EF对折,点A恰 2020-05-22 …
如果用n表示六边形一条边上的小圆圈数,m表示这个六边形中小圆圈的总数,那么n和m的关系是什么 2020-06-06 …
如果用n表示六边形每边上的小圆圈数,m表示这个六边形中小圆圈的总数,那么m和n的关系是什么? 2020-06-06 …
长方形的面积是12.5平方厘米求长方形中半圆的面积.半圆的直径是长. 2020-06-06 …
如图一些大小相等的正方形内分别紧排着一些等圆第一个有1个圆第二图有4个圆第3图有9个圆设正方形的边 2020-07-31 …
如图,已知在三角形中,E是AC上一点,以AE为直径的圆O与过B点的圆P外切于点D,若AC和BC边的 2020-07-31 …
六年级数学题,在长方形中画圆,学霸们能帮我解一下吗在长方形中画圆4个,在长方形中画半圆4个,刚上六年 2020-11-15 …
类比“周长一定的平面图形中,圆的面积最大”,则表面积一定的空间图形中,体积最大的是()A.正方体B. 2020-11-29 …
已知:如图1,图形①满足AD=AB,MD=MB,∠A=72°,∠M=144°。图形②与图形①恰好拼成 2020-12-23 …