早教吧作业答案频道 -->数学-->
(f.2因式分解)利用平方差或说完全平方的恒等式,展开下列各数式1.(5x-40y)(x/7+8y/7)2.16(-2x/3-y/3)(y/4-x/2)3.[4(3y/2+1/6)]^24.[(a+b)(a-b)]^25.(x+2y-3x)(x+2y+3z)
题目详情
(f.2 因式分解)
利用平方差或说完全平方的恒等式,展开下列各数式
1.(5x-40y)(x/7+8y/7)
2.16(-2x/3-y/3)(y/4-x/2)
3.[4(3y/2+1/6)]^2
4.[(a+b)(a-b)]^2
5.(x+2y-3x)(x+2y+3z)
利用平方差或说完全平方的恒等式,展开下列各数式
1.(5x-40y)(x/7+8y/7)
2.16(-2x/3-y/3)(y/4-x/2)
3.[4(3y/2+1/6)]^2
4.[(a+b)(a-b)]^2
5.(x+2y-3x)(x+2y+3z)
▼优质解答
答案和解析
1.
(5x-40y)(x/7+8y/7)
=(5/7)(x-8y)(x+8y)
=(5/7)(x^2-64y^2)
=5x^2/7-320y^2/7
2.
16(-2x/3-y/3)(y/4-x/2)
=16(-1/3)(1/4)(2x+y)(y-2x)
=(-4/3)(y^2-4x^2)
=16x^2/3-4y^2/3
3.
[4(3y/2+1/6)]^2
=[4(1/6)(9y+1)]^2
=[(2/3)(9y+1)]^2
=(4/9)(81y^2+18y+1)
=36y^2+8y+4/9
4.
[(a+b)(a-b)]^2
=(a^2-b^2)^2
=a^4-2a^2b^2+b^4
5.
(x+2y-3z)(x+2y+3z)
=[(x+2y)-3z][(x+2y)+3z]
=(x+2y)^2-9z^2
=x^2+4xy+4y^2-9z^2
(5x-40y)(x/7+8y/7)
=(5/7)(x-8y)(x+8y)
=(5/7)(x^2-64y^2)
=5x^2/7-320y^2/7
2.
16(-2x/3-y/3)(y/4-x/2)
=16(-1/3)(1/4)(2x+y)(y-2x)
=(-4/3)(y^2-4x^2)
=16x^2/3-4y^2/3
3.
[4(3y/2+1/6)]^2
=[4(1/6)(9y+1)]^2
=[(2/3)(9y+1)]^2
=(4/9)(81y^2+18y+1)
=36y^2+8y+4/9
4.
[(a+b)(a-b)]^2
=(a^2-b^2)^2
=a^4-2a^2b^2+b^4
5.
(x+2y-3z)(x+2y+3z)
=[(x+2y)-3z][(x+2y)+3z]
=(x+2y)^2-9z^2
=x^2+4xy+4y^2-9z^2
看了(f.2因式分解)利用平方差或...的网友还看了以下:
等差数列经过怎样的变化还是等差数列?比如说等差数列{an}an加一个常数或者扩大常数倍依旧是等差数 2020-04-27 …
一道数列题目1.定义:在数列{an}中,若{an}^2-{an-1}^2=p,(n≥2,n∈N*, 2020-05-17 …
如果一个数列的各项都是实数,且从第二项开始,每一项与它前一项的平方差是相同的常数,则称该数列为等方 2020-06-10 …
若数列an满足an+1平方-an2=d.其中d为常数,则称数列an为等方差数列,已知等方差数列a满 2020-06-10 …
1.已知等差数列an的首相和等比数列bn的首项相等,公差和公比都是d,又知d不等于1,且a4=b, 2020-07-09 …
关于等比差数列的求和公式问题各项都是一个等比数列和一个等差数列的各项的乘积构成的等比差数列(如数列 2020-07-16 …
求等比,差数列已知a,b,c成等比数列,a,x,b和b,y,c都成等差数列,且xy≠0,则a÷x+ 2020-07-29 …
若数列{an}满足-=k(k为常数),则称{an}为等比差数列,k叫公比差.已知{an}是以2为公 2020-07-30 …
1.可直接用标准差评价两数列差异程度大小的条件是:两数列的平均数()A.相差较大B.相差较小C.不 2020-08-03 …
(20少少•惠州地模)若数列{an}满足an+2an+少-an+少an=k(k为常数),则称{an} 2020-11-12 …