早教吧作业答案频道 -->其他-->
深奥的问题有一个教授,手下有两个聪明绝顶的学生;一天教授出了这道题目:他从2到99中选出两个不同的整数,把积告诉甲,把和告诉乙;乙说:我虽然不能确定这两个数是什么,但是
题目详情
深奥的问题
有一个教授,手下有两个聪明绝顶的学生;
一天教授出了这道题目:他从2到99中选出两个不同的整数,把积告诉甲,把和告诉乙;
乙说:我虽然不能确定这两个数是什么,但是我肯定你也不知道这两个数是什么。
甲说:我本来的确不知道,但是听你这么一说,我现在能够确定这两个数字了。
乙说:既然你这么说,我现在也知道这两个数字是什么了。
这两个数到底是什么
问题补充:能给过程吗???????????????????
有一个教授,手下有两个聪明绝顶的学生;
一天教授出了这道题目:他从2到99中选出两个不同的整数,把积告诉甲,把和告诉乙;
乙说:我虽然不能确定这两个数是什么,但是我肯定你也不知道这两个数是什么。
甲说:我本来的确不知道,但是听你这么一说,我现在能够确定这两个数字了。
乙说:既然你这么说,我现在也知道这两个数字是什么了。
这两个数到底是什么
问题补充:能给过程吗???????????????????
▼优质解答
答案和解析
你问的问题出自"鬼谷考徒"
孙膑,庞涓都是鬼谷子的徒弟;一天鬼出了这道题目:他从2到99中选出两个不同的整数,把积告诉孙,把和告诉庞。
庞说:我虽然不能确定这两个数是什么,但是我肯定你也不知道这两个数是什么。
孙说:我本来的确不知道,但是听你这么一说,我现在能够确定这两个数字了。
庞说:既然你这么说,我现在也知道这两个数字是什么了。
问这两个数字是什么?为什么?
解题思路1:
假设数为 X,Y;和为X+Y=A,积为X*Y=B.
根据庞第一次所说的:“我肯定你也不知道这两个数是什么”。由此知道,X+Y不是两个素数之和。那么A的可能11,17,23,27,29,35,37,41,47,51,53,57,59,65,67,71,77,79,83,87,89,95,97.
我们再计算一下B的可能值:
和是11能得到的积:18,24,28,30
和是17能得到的积:30,42,52,60,66,70,72
和是23能得到的积:42,60...
和是27能得到的积:50,72...
和是29能得到的积:...
和是35能得到的积:66...
和是37能得到的积:70...
......
我们可以得出可能的B为....,当然了,有些数(30=5*6=2*15)出现不止一次。
这时候,孙依据自己的数比较计算后,“我现在能够确定这两个数字了。”
我们依据这句话,和我们算出来的B的集合,我们又可以把计算出来的B的集合删除一些重复数。
和是11能得到的积:18,24,28
和是17能得到的积:52
和是23能得到的积:42,76...
和是27能得到的积:50,92...
和是29能得到的积:54,78...
和是35能得到的积:96,124...
和是37能得到的积:,...
......
因为庞说:“既然你这么说,我现在也知道这两个数字是什么了。”那么由和得出的积也必须是唯一的,由上面知道只有一行是剩下一个数的,那就是和17积52。那么X和Y分别是4和13。
解题思路2:
说话依次编号为S1,P1,S2。
设这两个数为x,y,和为s,积为p。
由S1,P不知道这两个数,所以s不可能是两个质数相加得来的,而且s<=41,因为如果s>41,那么P拿到41×(s-41)必定可以猜出s了(关于这一点,参考老马的证明,这一点很巧妙,可以省不少事情)。所以和s为{11,17,23,27,29,35,37,41}之一,设这个集合为A。
1).假设和是11。11=2+9=3+8=4+7=5+6,如果P拿到18,18=3×6=2×9,只有2+9落在集合A中,所以P可以说出P1,但是这时候S能不能说出S2呢?我们来看,如果P拿到24,24=6×4=3×8=2×12,P同样可以说P1,因为至少有两种情况P都可以说出P1,所以A就无法断言S2,所以和不是11。
2).假设和是17。17=2+15=3+14=4+13=5+12=6+11=7+10=8+9,很明显,由于P拿到4×13可以断言P1,而其他情况,P都无法断言P1,所以和是17。
3).假设和是23。23=2+21=3+20=4+19=5+18=6+17=7+16=8+15=9+14=10+13=11+12,咱们先考虑含有2的n次幂或者含有大质数的那些组,如果P拿到4×19或7×16都可以断言P1,所以和不是23。
4).假设和是27。如果P拿到8×19或4×23都可以断言P1,所以和不是27。
5).假设和是29。如果P拿到13×16或7×22都可以断言P1,所以和不是29。
6).假设和是35。如果P拿到16×19或4×31都可以断言P1,所以和不是35。
7).假设和是37。如果P拿到8×29或11×26都可以断言P1,所以和不是37。
8).假设和是41。如果B拿到4×37或8×33,都可以断言P1,所以和不是41。
综上所述:这两个数是4和13。
解题思路3:
孙庞猜数的手算推理解法
1)按照庞的第一句话的后半部分,我们肯定庞知道的和S肯定不会大于54。
因为如果和54
孙膑,庞涓都是鬼谷子的徒弟;一天鬼出了这道题目:他从2到99中选出两个不同的整数,把积告诉孙,把和告诉庞。
庞说:我虽然不能确定这两个数是什么,但是我肯定你也不知道这两个数是什么。
孙说:我本来的确不知道,但是听你这么一说,我现在能够确定这两个数字了。
庞说:既然你这么说,我现在也知道这两个数字是什么了。
问这两个数字是什么?为什么?
解题思路1:
假设数为 X,Y;和为X+Y=A,积为X*Y=B.
根据庞第一次所说的:“我肯定你也不知道这两个数是什么”。由此知道,X+Y不是两个素数之和。那么A的可能11,17,23,27,29,35,37,41,47,51,53,57,59,65,67,71,77,79,83,87,89,95,97.
我们再计算一下B的可能值:
和是11能得到的积:18,24,28,30
和是17能得到的积:30,42,52,60,66,70,72
和是23能得到的积:42,60...
和是27能得到的积:50,72...
和是29能得到的积:...
和是35能得到的积:66...
和是37能得到的积:70...
......
我们可以得出可能的B为....,当然了,有些数(30=5*6=2*15)出现不止一次。
这时候,孙依据自己的数比较计算后,“我现在能够确定这两个数字了。”
我们依据这句话,和我们算出来的B的集合,我们又可以把计算出来的B的集合删除一些重复数。
和是11能得到的积:18,24,28
和是17能得到的积:52
和是23能得到的积:42,76...
和是27能得到的积:50,92...
和是29能得到的积:54,78...
和是35能得到的积:96,124...
和是37能得到的积:,...
......
因为庞说:“既然你这么说,我现在也知道这两个数字是什么了。”那么由和得出的积也必须是唯一的,由上面知道只有一行是剩下一个数的,那就是和17积52。那么X和Y分别是4和13。
解题思路2:
说话依次编号为S1,P1,S2。
设这两个数为x,y,和为s,积为p。
由S1,P不知道这两个数,所以s不可能是两个质数相加得来的,而且s<=41,因为如果s>41,那么P拿到41×(s-41)必定可以猜出s了(关于这一点,参考老马的证明,这一点很巧妙,可以省不少事情)。所以和s为{11,17,23,27,29,35,37,41}之一,设这个集合为A。
1).假设和是11。11=2+9=3+8=4+7=5+6,如果P拿到18,18=3×6=2×9,只有2+9落在集合A中,所以P可以说出P1,但是这时候S能不能说出S2呢?我们来看,如果P拿到24,24=6×4=3×8=2×12,P同样可以说P1,因为至少有两种情况P都可以说出P1,所以A就无法断言S2,所以和不是11。
2).假设和是17。17=2+15=3+14=4+13=5+12=6+11=7+10=8+9,很明显,由于P拿到4×13可以断言P1,而其他情况,P都无法断言P1,所以和是17。
3).假设和是23。23=2+21=3+20=4+19=5+18=6+17=7+16=8+15=9+14=10+13=11+12,咱们先考虑含有2的n次幂或者含有大质数的那些组,如果P拿到4×19或7×16都可以断言P1,所以和不是23。
4).假设和是27。如果P拿到8×19或4×23都可以断言P1,所以和不是27。
5).假设和是29。如果P拿到13×16或7×22都可以断言P1,所以和不是29。
6).假设和是35。如果P拿到16×19或4×31都可以断言P1,所以和不是35。
7).假设和是37。如果P拿到8×29或11×26都可以断言P1,所以和不是37。
8).假设和是41。如果B拿到4×37或8×33,都可以断言P1,所以和不是41。
综上所述:这两个数是4和13。
解题思路3:
孙庞猜数的手算推理解法
1)按照庞的第一句话的后半部分,我们肯定庞知道的和S肯定不会大于54。
因为如果和54
看了深奥的问题有一个教授,手下有两...的网友还看了以下:
星期日,小明和爸爸一起去登山,小明用了20min登上山顶,爸爸用了25min登上山顶,小明与爸爸的 2020-05-14 …
自习课,赵明对一道数学题百思不得其解,只好向同桌的李杰请教.李杰是数学高手,这道题他早己做好,但他 2020-06-10 …
阅读下文,回答问题。傅伯成,字景初。少从朱熹学。授明州教授。以年少,嫌以师自居,日与诸生论质往复, 2020-07-16 …
老师的生日!小明和小红都是老师的学生.有一天,老师告诉小明他生日的月份,告诉小红生日的日期.已知老 2020-07-22 …
数学关于对顶角的问题2条直线相交于点O有2对对顶角3条直线相交于点O有3对对顶角4条直线相交于点O 2020-08-01 …
老师的生日(一道数学题目)小明和小红是老师的学生.有一天,老师告诉小明他生日的月份,告诉小红生日的日 2020-11-08 …
阅读下面的文言文,完成以下小题。傅伯成,字景初。少从朱熹学。授明州教授。以年少,嫌以师自居,日与诸生 2020-11-16 …
根据中文提示,写一段50个词左右的对话.李明想买一双黑色的鞋子,售货员问他穿多大号的,李明告诉他是8 2020-12-15 …
阅读下面的文言文,完成小题。傅伯成,字景初。少从朱熹学。授明州教授。以年少,嫌以师自居,日与诸生论质 2020-12-23 …
小明,小强是邻居,这个星期天两人去登山.他们同时从山脚匀速爬上去,当小强爬上山顶时,小明却离山顶40 2020-12-27 …