早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设向量a=(1,-2),向量b=(1,1),则模|向量a+t向量b|(t属于R)的最小值

题目详情
设向量a=(1,-2),向量b=(1,1),则模|向量a+ t向量b|(t属于R)的最小值
▼优质解答
答案和解析
|a+ tb|^2=(a+tb).(a+tb)= ( 1+t,-2+t).(1+t,-2+t)= (1+t)^2 + (t-2)^2= 2t^2-2t+5let f(t)=2t^2-2t+5f'(t) = 4t-2 = 0t =1/2f''(t) = 4 >0 (min)f(1/2) = 1/2-1+5= 9/2min|a+ tb| = 3√2/2