早教吧作业答案频道 -->数学-->
设M={x|f(x)=x},N={x|f(f(x))=x},(1)求证:M是N的子集(2)f(x)为单调递增时,是否有M=N?并证明.我想问的是第二个问号,如果f(x)为单调递减时,为什么不行?如果f(x)=-x,此时M={X|f(x)=x}={0},而N={X|f[f(x)
题目详情
设M={x|f(x)=x},N={x|f(f(x))=x},(1)求证:M是N的子集(2)f(x)为单调递增时,是否有M=N?并证明.
我想问的是第二个问号,如果f(x)为单调递减时,为什么不行?如果f(x)=-x,此时M={X|f(x)=x}={0},而N={X|f[f(x)]=x}={0,1},∴M≠N.
为什么这时候N={0,1}呢?
我主要是想问为什么N={X|f[f(x)]=x}={0,1}?
我想问的是第二个问号,如果f(x)为单调递减时,为什么不行?如果f(x)=-x,此时M={X|f(x)=x}={0},而N={X|f[f(x)]=x}={0,1},∴M≠N.
为什么这时候N={0,1}呢?
我主要是想问为什么N={X|f[f(x)]=x}={0,1}?
▼优质解答
答案和解析
关于你的问题,其实是反证法
设f(x)=-x
则M={X|f(x)=x} 实际是满足-X=X的集合,所以M={0},
N={X|f[f(x)]=x}
实际就是满足-(-x)=x,应该是x取任意值均可
所以我觉得是答案有问题
而且这个假设也有问题,f(x)=-x不可能是单调递增呀.
你从哪里看到的答案,这个答案问题太多了
设f(x)=-x
则M={X|f(x)=x} 实际是满足-X=X的集合,所以M={0},
N={X|f[f(x)]=x}
实际就是满足-(-x)=x,应该是x取任意值均可
所以我觉得是答案有问题
而且这个假设也有问题,f(x)=-x不可能是单调递增呀.
你从哪里看到的答案,这个答案问题太多了
看了 设M={x|f(x)=x},...的网友还看了以下:
先化简,再求值 (1)[(x-y)的平方+(x+y)(x-y)]÷2x 其中X=2010,y=20 2020-05-16 …
解分式方程:1/X-2+1/X-6=1/X-7+1/X-11/X-2+1/X-6=1/X-7+1/ 2020-05-16 …
已知3f(x)+2f(x)=x,求f(x)怎么算我自己算了一半因为3f(x)+2f(x)=x3f( 2020-06-03 …
用[x]表示不超过x的最大整数,记{x}=x-[x],其中x∈R,设f(x)=[x]•{x}.用[ 2020-06-04 …
设f(x)=ln10x,g(x)=x,h(x)=ex10,则当x充分大时有()A.g(x)<h(x 2020-06-18 …
求函数的驻点f'x(x,y)=2xy(4-x-y)-x^2y=0.(1)其中f'x(x,y)中左边 2020-07-11 …
1.7/x²-1+8/x²-2x=37-9x/x^3-x²-x+12.3/x²+x-2=x/x-1 2020-07-18 …
导数乘法证明中h是什么意思?(f(x)g(x))'=lim(h→0)[f(x+h)g(x+h)-f 2020-07-22 …
F(x)=x(e^x-1)-ax^2,若当x≥0时f(x)≥0,求a的取值范围?f(xF(x)=x 2020-07-26 …
1.集合M={x|x^2>4},P={x|2/{x-1}≥0,则集合P除集合M的集合N{}A:{x 2020-07-30 …