早教吧作业答案频道 -->数学-->
设M={x|f(x)=x},N={x|f(f(x))=x},(1)求证:M是N的子集(2)f(x)为单调递增时,是否有M=N?并证明.我想问的是第二个问号,如果f(x)为单调递减时,为什么不行?如果f(x)=-x,此时M={X|f(x)=x}={0},而N={X|f[f(x)
题目详情
设M={x|f(x)=x},N={x|f(f(x))=x},(1)求证:M是N的子集(2)f(x)为单调递增时,是否有M=N?并证明.
我想问的是第二个问号,如果f(x)为单调递减时,为什么不行?如果f(x)=-x,此时M={X|f(x)=x}={0},而N={X|f[f(x)]=x}={0,1},∴M≠N.
为什么这时候N={0,1}呢?
我主要是想问为什么N={X|f[f(x)]=x}={0,1}?
我想问的是第二个问号,如果f(x)为单调递减时,为什么不行?如果f(x)=-x,此时M={X|f(x)=x}={0},而N={X|f[f(x)]=x}={0,1},∴M≠N.
为什么这时候N={0,1}呢?
我主要是想问为什么N={X|f[f(x)]=x}={0,1}?
▼优质解答
答案和解析
关于你的问题,其实是反证法
设f(x)=-x
则M={X|f(x)=x} 实际是满足-X=X的集合,所以M={0},
N={X|f[f(x)]=x}
实际就是满足-(-x)=x,应该是x取任意值均可
所以我觉得是答案有问题
而且这个假设也有问题,f(x)=-x不可能是单调递增呀.
你从哪里看到的答案,这个答案问题太多了
设f(x)=-x
则M={X|f(x)=x} 实际是满足-X=X的集合,所以M={0},
N={X|f[f(x)]=x}
实际就是满足-(-x)=x,应该是x取任意值均可
所以我觉得是答案有问题
而且这个假设也有问题,f(x)=-x不可能是单调递增呀.
你从哪里看到的答案,这个答案问题太多了
看了 设M={x|f(x)=x},...的网友还看了以下:
,;定义在正整数集f(x)对任意m,n,都有f(m+n)=f(m)+f(n)+4(m+n)-2,且 2020-05-13 …
定义映射f:A→B,其中A={(m,n)|m,n∈R}接着 B=R,已知对所有的有序正整数对(m, 2020-05-16 …
已知函数f(x)满足:对任意实数m,n都有f(m+n)=f(m)+f(n)-1已知函数f(x)满足 2020-05-17 …
f(x)与f(-x)有什么关系,为什么?在函数f(x)中,当x取M时的函数值与函数f(-x)中x取 2020-07-14 …
为什么真数大于0所以m-2>0,n-1>0则√[(m-2)(n-1)]≤[(m-2)+(n-1)] 2020-07-30 …
在f(m,n)中,.m.n.f(m,n)均为非负整数且对任意的m,n有f(0,n)=n+1,f(m 2020-07-31 …
关于万有引力的问题F(m)正比于m/r^2①F'(M)正比于M/r^2②由12得F正比于(M*m)/ 2020-11-29 …
f(n)=(2n+7)X3^n+9,若存在自然数m,使f(n)能被n整除,那么m的最大值是多少?内容 2020-12-02 …
万有引力推倒他说F∝M/R^2且F∝m/R^2为什么就有F∝Mm/R^2你只说了为什么F与M/R^2 2020-12-28 …
物理公式里面的F=m(2派/T)^2r这里面的T的单位是什么m的单位是kg,r的单位是m,还有就是F 2021-02-05 …