早教吧作业答案频道 -->数学-->
已知抛物线x^2=y上有一定点A(-1,1)和两个动点Q、P,当PA垂直于PQ时,点Q的横坐标的取值范围是?已知抛物线x^2=y上有一定点A(-1,1)和两个动点Q、P,当PA垂直于PQ时,点Q的横坐标的取值范围是
题目详情
已知抛物线x^2=y上有一定点A(-1,1)和两个动点Q、P,当PA垂直于PQ时,点Q的横坐标的取值范围是?
已知抛物线x^2=y上有一定点A(-1,1)和两个动点Q、P,当PA垂直于PQ时,点Q的横坐标的取值范围是
已知抛物线x^2=y上有一定点A(-1,1)和两个动点Q、P,当PA垂直于PQ时,点Q的横坐标的取值范围是
▼优质解答
答案和解析
关系!
设P(a,b) Q(x,y) 则向量AP=(a+1,b-1) 向量PQ=(x-a,y-b)
由垂直关系得(a+1)(x-a)+(b-1)(y-b)=0
又P、Q在抛物线上即a^2=b x^2=y
故(a+1)(x-a)+(a^2-1)(x^2-a^2)=0
整理得(a+1)(x-a)[1+(a-1)(x+a)]=0
而P和Q和A三点不重合即a≠-1 x≠a
所以式子可化为1+(a-1)(x+a)=0
整理得 a^2+(x-1)a+1-x=0
由题意可知,此关于a的方程有实数解 即判别式△≥0
得(x-1)^2-4(1-x)≥0解得x≤-3或x≥1
设P(a,b) Q(x,y) 则向量AP=(a+1,b-1) 向量PQ=(x-a,y-b)
由垂直关系得(a+1)(x-a)+(b-1)(y-b)=0
又P、Q在抛物线上即a^2=b x^2=y
故(a+1)(x-a)+(a^2-1)(x^2-a^2)=0
整理得(a+1)(x-a)[1+(a-1)(x+a)]=0
而P和Q和A三点不重合即a≠-1 x≠a
所以式子可化为1+(a-1)(x+a)=0
整理得 a^2+(x-1)a+1-x=0
由题意可知,此关于a的方程有实数解 即判别式△≥0
得(x-1)^2-4(1-x)≥0解得x≤-3或x≥1
看了 已知抛物线x^2=y上有一定...的网友还看了以下:
已知3个类O、P和Q,其中,类O由类P的1个实例和类Q的1个或多个实例构成。能够正确表示类O、P和Q 2020-05-26 …
已知P点(-2,-3)和Q为圆心的圆(x-4)^2+(y-2)^2=9求1.画出以PQ为直径,Q” 2020-06-30 …
已知点P(-2,-3)和以Q为圆心的圆(x-4)^2+(y-2)^2=91.求以PQ为直径,Q'为 2020-07-26 …
已知点P和点Q是曲线y=x2-2x-3上的两点,且点P的横坐标是1,点Q的横坐标是4,求:已知点P 2020-07-31 …
已知点P和点Q是曲线y=x^2-2x-3上的两点,且点P的横坐标是1,点Q的横坐标是4,求:(1) 2020-07-31 …
知点P和点Q是曲线y=x^2-2x-3上的两点,且点P的横坐标是1,点Q的横坐标是4,求割 2020-07-31 …
已知点P和点Q是曲线y=x2-2x-3上的两点,且点P的横坐标是1,点Q的横坐标是4,求:(1)割 2020-07-31 …
(高一数学)已知P(-2,-3)和以Q为圆心的圆求以PQ为直径,Q'为圆心的圆的方程.以Q为圆心的圆 2020-11-11 …
对于命题p和命题q,若p真q假,则命题p∧q和命题p∨q的真假为()A.p∧q和p∨q都为真B.p∧ 2020-12-13 …
,已知点P和点Q是曲线y=x^2-2x-3上的两点,且点P的横坐标是1,点Q的横坐标是4,求(1)知 2021-02-07 …