早教吧作业答案频道 -->数学-->
△ABC的高AD、BE相交于点H,点G在AD的延长线上,DG=HD,求证ABCG四点共圆想证对角互补但是证不出来……我也想给图啊!
题目详情
△ABC的高AD、BE相交于点H,点G在AD的延长线上,DG=HD,求证ABCG四点共圆
想证对角互补但是证不出来……
我也想给图啊!
想证对角互补但是证不出来……
我也想给图啊!
▼优质解答
答案和解析
自己随便画个图就行了.
连接CH,延长,交AB于点F,则由于三角形垂心交于一点,即H.
由于HD=DG,且CD垂直于AG,故三角形CHG为等腰三角形,
同理,三角形BGH也是等腰三角形.
设角HBC=角GBC=a,角HCB=角GCB=b,
三角形BCG中,角BGC=180-a-b
三角形BCE中,角ACH=90-a-b,
则三角形ACF中,角BAC=90-(90-a-b)
最终,角BAC+角BGC=180
得证
连接CH,延长,交AB于点F,则由于三角形垂心交于一点,即H.
由于HD=DG,且CD垂直于AG,故三角形CHG为等腰三角形,
同理,三角形BGH也是等腰三角形.
设角HBC=角GBC=a,角HCB=角GCB=b,
三角形BCG中,角BGC=180-a-b
三角形BCE中,角ACH=90-a-b,
则三角形ACF中,角BAC=90-(90-a-b)
最终,角BAC+角BGC=180
得证
看了△ABC的高AD、BE相交于点...的网友还看了以下:
已知f(x)=ax-1x,g(x)=lnx,(x>0,a∈R是常数).(1)求曲线y=g(x)在点 2020-05-13 …
已知函数f(x)、g(x)在(a,b)上是增函数,且a<g(x)<b,求证:f(g(x))在(a, 2020-05-16 …
一道高中导数已知a属于R,f(x) =√(x+1) - √(2x) .g(x)=alnx1,当a= 2020-05-17 …
要测量海岛上一座山峰A的高度AH,立两根高三丈的标竿BC和DE,两杆相距BD=1000步,B.D. 2020-05-23 …
已知函数f(x)、g(x)在(a,b)上是增函数,且a<g(x)<b,求证:f(g(x))在(a, 2020-06-08 …
x=g(y).设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y的关系,用y把x表示出, 2020-07-29 …
非空集合G关于运算○满足;1,对于任意a,b∈G,都有a○b∈G;2,存在e∈G,使对一切a∈G都 2020-08-01 …
非空集合G关于运算○满足;1,对于任意a,b∈G,都有a○b∈G;2,存在e∈G,使对尤其是那个e 2020-08-01 …
已知函数f(x)、g(x)在(a,b)上是增函数,且a<g(x)<b,求证:f(g(x))在(a, 2020-08-01 …
非空集合G关于运算⊕满足:(1)对任意a、b∈G,都有a⊕b∈G;(2)存在c∈G,使得对一切a∈G 2020-11-10 …