早教吧作业答案频道 -->其他-->
设A,B分别为椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左右顶点,(13/2)为椭圆上一点椭圆长半轴的长等于焦距1、求椭圆方程(这一问,我算出来是:x^2/4+y^2/3=1,2、设P(4,m)(m不等于0)若直线AP,BP分别于椭圆相
题目详情
设A,B分别为椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左右顶点,(13/2)为椭圆上一点
椭圆长半轴的长等于焦距
1、求椭圆方程(这一问,我算出来是:x^2/4+y^2/3=1,
2、设P(4,m)(m不等于0)若直线AP,BP分别于椭圆相交于异于A,B的点M,N求证:脚MBN为钝角?
紧急通知_________________________________________________________________
朋友们,我已经弄懂了,你们不用算了,
椭圆长半轴的长等于焦距
1、求椭圆方程(这一问,我算出来是:x^2/4+y^2/3=1,
2、设P(4,m)(m不等于0)若直线AP,BP分别于椭圆相交于异于A,B的点M,N求证:脚MBN为钝角?
紧急通知_________________________________________________________________
朋友们,我已经弄懂了,你们不用算了,
▼优质解答
答案和解析
(1)的求解释正确的呐~(考试时记得一定不要求错呐)
至于(2),首先你要正确的画出图来(希望你已经做到).然后,这类解析几何问题的一个得力的手段是向量.你应该学到过,如果两个向量的点积为负数,那么它们的夹角就应该是一个钝角.这样,问题就转化成:证明向量BM和向量BN的点积是负数.
以下我只将思路打出,具体计算希望楼主能够自己练习,解析几何就是考察计算功底.
(1)写出AMP所在直线的方程,写出NBP所在直线的方程(均用含m的式子表示)
(2)分别将两直线与椭圆联立,并求出M、N两点的横坐标.不要慌,此题之中,由于另外的交点A、B已知,可以轻易用韦达定理的“两根之积”形式解出M、N的横坐标.
(3)将得到的横坐标回带入相应直线方程(绝对不要代回椭圆,会死的),求出M、N的纵坐标,也不算困难,有些项开始被消去了.
(4)紧接着,写出向量BM和BN的坐标形式(一定不要写反呐),又有一些项开始消失.
(5)做点积!横坐标相乘+纵坐标相乘.得出一个恒负的式子(注意m不为0),证明完毕.
至于(2),首先你要正确的画出图来(希望你已经做到).然后,这类解析几何问题的一个得力的手段是向量.你应该学到过,如果两个向量的点积为负数,那么它们的夹角就应该是一个钝角.这样,问题就转化成:证明向量BM和向量BN的点积是负数.
以下我只将思路打出,具体计算希望楼主能够自己练习,解析几何就是考察计算功底.
(1)写出AMP所在直线的方程,写出NBP所在直线的方程(均用含m的式子表示)
(2)分别将两直线与椭圆联立,并求出M、N两点的横坐标.不要慌,此题之中,由于另外的交点A、B已知,可以轻易用韦达定理的“两根之积”形式解出M、N的横坐标.
(3)将得到的横坐标回带入相应直线方程(绝对不要代回椭圆,会死的),求出M、N的纵坐标,也不算困难,有些项开始被消去了.
(4)紧接着,写出向量BM和BN的坐标形式(一定不要写反呐),又有一些项开始消失.
(5)做点积!横坐标相乘+纵坐标相乘.得出一个恒负的式子(注意m不为0),证明完毕.
看了设A,B分别为椭圆x^2/a^...的网友还看了以下:
1.若W=7减(M/N+1)的平方,当W有最大值为P,则2P+M+N=?2.已知|X+Y|=|X| 2020-04-26 …
已知函数y=(m-1)x^(m^2-1)+m当m为何值时,这个函数是一次函数并且图像经过第二,三, 2020-05-13 …
一元二次方程 韦达定理m是方程x^2-2007x+1=0的一个根,求m^2-2006m+2007/ 2020-05-16 …
m为何值时,经过俩点A(-m,6)B(1.3m)的直线的斜率是12 (2)m为何值时,经过俩点A( 2020-06-27 …
已知一个圆心为M(2,1)的圆,且与圆C;x2+y2-3x=0相交于A.B两点.若心M到直线Ab的 2020-07-20 …
点P在直线l,m外.(1)过P作直线与直线l,m相交,可得到多少同位角,内错角,同旁内角?(2)思 2020-07-23 …
已知抛物线y=1/2X^2与过点M(0,1)的直线l相交于A、B抛物线y=-x^2/2与过点M(0 2020-07-29 …
m是大于1的自然数,与m相邻的两个自然数是和. 2020-07-31 …
谁知道以下填空题m是大于1的自然数,与m相邻的两个自然数是(). 2020-08-01 …
定义在(-1,1)上的函数f(x)满足:f(x)-f(y)=f(x-y1-xy),当x∈(-1,0) 2020-11-03 …