早教吧作业答案频道 -->数学-->
a>0,a不为0,数列{an}前n项和为Sn,满足[(a^n)-1]/Sn=1-(1/a),令数列{bn},bn=an*lgan,求{bn}的前n项和Tn
题目详情
a>0,a不为0,数列{an}前n项和为Sn,满足[(a^n)-1]/Sn=1-(1/a),令数列{bn},bn=an*lgan,求{bn}的前n项和Tn
▼优质解答
答案和解析
当a不等于1时,
由[(a^n)-1]/Sn=1-(1/a),
得 Sn=a*(a^n-1)/(a-1)……(1)
此时 S(n-1)=a*[a^(n-1)-1]/(a-1)……(2)
(1)-(2)有 an=a[a^n-a^(n-1)]/(a-1)
=a^n (n belongs to N*)
所以 bn=an·lgan
=a^n·lga^n
=n·a^n·lgn
Tn=lga[a+2a^2+3a^3+……na^n]
所以 aTn=lga[a^2+2a^3+……(n-1)a^n+na^(n+1)]
两式相减得 (1-a)Tn=lga·[(a+a^2+a^3……a^n)-na^(n+1)]
=lga·{a(1-a^n)/(1-a)-n·a^(n+1)]
所以 Tn=lga·{a(1-a^n)/(1-a)-n·a^(n+1)]/(1-a) (n belongs to N*)
当a=1时,是不是做不了呢?怀疑你把题目打错了吧!a不为0---改为1吧?
百分之一百 自己算的 没有查任何资料
由[(a^n)-1]/Sn=1-(1/a),
得 Sn=a*(a^n-1)/(a-1)……(1)
此时 S(n-1)=a*[a^(n-1)-1]/(a-1)……(2)
(1)-(2)有 an=a[a^n-a^(n-1)]/(a-1)
=a^n (n belongs to N*)
所以 bn=an·lgan
=a^n·lga^n
=n·a^n·lgn
Tn=lga[a+2a^2+3a^3+……na^n]
所以 aTn=lga[a^2+2a^3+……(n-1)a^n+na^(n+1)]
两式相减得 (1-a)Tn=lga·[(a+a^2+a^3……a^n)-na^(n+1)]
=lga·{a(1-a^n)/(1-a)-n·a^(n+1)]
所以 Tn=lga·{a(1-a^n)/(1-a)-n·a^(n+1)]/(1-a) (n belongs to N*)
当a=1时,是不是做不了呢?怀疑你把题目打错了吧!a不为0---改为1吧?
百分之一百 自己算的 没有查任何资料
看了 a>0,a不为0,数列{an...的网友还看了以下:
在对数函数y=logax中,当底数a>1最接近x轴的是不是看底数a,a越大越靠近x轴.当y=l在对数 2020-03-31 …
若a是不为1的有理数,我们把1/1-a称为a的倒差数...若a是不为1的有理数,我们把1/1-a称 2020-05-13 …
高中选修1-1命题:“若a,b是奇数,则a+b是偶数”的逆反命题是:若a+b不是偶数,则a,b不都 2020-06-03 …
如下a=b,b=c可以推出c=a;那a不等于b,b不等于c,可不可以推出c不等于a呢?这个数学题涉 2020-07-10 …
Java求亲密数两个不同的自然数A和B,如果整数A的全部因子(包括1,不包括A本身)之和等于B;且 2020-07-17 …
有下列四个命题:1.若a、b是不相等的无理数,则ab+a-b是无理数2.若a、b是不相等的无理数, 2020-08-01 …
原命题与逆否命题原命题:若a,b都是奇数,则a+b是偶数逆否命题:若a+b不是偶数,则a,b不都是 2020-08-01 …
不定积分变形a^x的导数为a^xlna.a^xlna*dx的原函数为不定积分∫(a^x/lna)+ 2020-08-02 …
判断下面命题的真假.若a是无理数,则a+5是无理数若a+5不是无理数,则a不是无理数.若a不是无理数 2020-11-18 …
如果a、b、c是不同的自然数,且a、b、c都不为0.A=a*b*c,那么A至少有几个因数?如果a、b 2020-11-20 …