早教吧作业答案频道 -->其他-->
(2013•乐山市中区模拟)如图甲,AB⊥BD,CD⊥BD,AP⊥PC,垂足分别为B、P、D,且三个垂足在同一直线上,我们把这样的图形叫“三垂图”.(1)证明:AB•CD=PB•PD.(2)如图乙,也是一个
题目详情
(2013•乐山市中区模拟)如图甲,AB⊥BD,CD⊥BD,AP⊥PC,垂足分别为B、P、D,且三个垂足在同一直线上,我们把这样的图形叫“三垂图”.

(1)证明:AB•CD=PB•PD.
(2)如图乙,也是一个“三垂图”,上述结论成立吗?请说明理由.
(3)已知抛物线与x轴交于点A(-1,0),B(3,0),与y轴交于点(0,-3),顶点为P,如图丙所示,若Q是抛物线上异于A、B、P的点,使得∠QAP=90°,求Q点坐标.

(1)证明:AB•CD=PB•PD.
(2)如图乙,也是一个“三垂图”,上述结论成立吗?请说明理由.
(3)已知抛物线与x轴交于点A(-1,0),B(3,0),与y轴交于点(0,-3),顶点为P,如图丙所示,若Q是抛物线上异于A、B、P的点,使得∠QAP=90°,求Q点坐标.
▼优质解答
答案和解析
(1)证明:∵AB⊥BD,CD⊥BD,
∴∠B=∠D=90°,
∴∠A+∠APB=90°,
∵AP⊥PC,
∴∠APB+∠CPD=90°,
∴∠A=∠CPD,
∴△ABP∽△PCD,
∴
=
,
∴AB•CD=PB•PD;
(2)AB•CD=PB•PD仍然成立.
理由如下:∵AB⊥BD,CD⊥BD,
∴∠B=∠CDP=90°,
∴∠A+∠APB=90°,
∵AP⊥PC,
∴∠APB+∠CPD=90°,
∴∠A=∠CPD,
∴△ABP∽△PCD,
∴
=
,
∴AB•CD=PB•PD;
(3)设抛物线解析式为y=ax2+bx+c(a≠0),
∵抛物线与x轴交于点A(-1,0),B(3,0),与y轴交于点(0,-3),
∴
,
解得
,
所以,y=x2-2x-3,
∵y=x2-2x-3=(x-1)2-4,
∴顶点P的坐标为(1,-4),
过点P作PC⊥x轴于C,设AQ与y轴相交于D,
则AO=1,AC=1+1=2,PC=4,
根据(2)的结论,AO•AC=OD•PC,
∴1×2=OD•4,
解得OD=
,
∴点D的坐标为(0,
),
设直线AD的解析式为y=kx+b(k≠0),
则
∴∠B=∠D=90°,
∴∠A+∠APB=90°,
∵AP⊥PC,
∴∠APB+∠CPD=90°,
∴∠A=∠CPD,
∴△ABP∽△PCD,
∴
AB |
PD |
PB |
CD |
∴AB•CD=PB•PD;
(2)AB•CD=PB•PD仍然成立.
理由如下:∵AB⊥BD,CD⊥BD,
∴∠B=∠CDP=90°,
∴∠A+∠APB=90°,
∵AP⊥PC,
∴∠APB+∠CPD=90°,
∴∠A=∠CPD,
∴△ABP∽△PCD,
∴
AB |
PD |
PB |
CD |
∴AB•CD=PB•PD;
(3)设抛物线解析式为y=ax2+bx+c(a≠0),
∵抛物线与x轴交于点A(-1,0),B(3,0),与y轴交于点(0,-3),

∴
|
解得
|
所以,y=x2-2x-3,
∵y=x2-2x-3=(x-1)2-4,
∴顶点P的坐标为(1,-4),
过点P作PC⊥x轴于C,设AQ与y轴相交于D,
则AO=1,AC=1+1=2,PC=4,
根据(2)的结论,AO•AC=OD•PC,
∴1×2=OD•4,
解得OD=
1 |
2 |
∴点D的坐标为(0,
1 |
2 |
设直线AD的解析式为y=kx+b(k≠0),
则
作业帮用户
2016-11-20
举报
![]()
![]() ![]() |
看了(2013•乐山市中区模拟)如...的网友还看了以下:
命题:“若空间两条直线a,b分别垂直平面α,则a∥b”学生小夏这样证明:设a,b与面α分别相交于A 2020-05-13 …
a//b,c垂直于a,则c一定垂直于b吗1.a//b,c垂直于a,则c一定垂直于b吗(判断并说明理 2020-05-13 …
a//b,c垂直于a,则c一定垂直于b吗1.a//b,c垂直于a,则c一定垂直于b吗(判断并说明理 2020-05-13 …
29.证明:(1)点A(a+2,b+2)与点B(b-4,a-6)关于4x+3y-11=0对称==> 2020-05-13 …
a b是非零向量且满足(a-2b)垂直a,(b-2a)垂直b,则a与b的夹角是如题已知(a-2b) 2020-05-15 …
设平面α⊥平面β,在平面α内的一条直线a垂直于平面β内的一条直线b,则A.直线a必垂直于平面βB. 2020-06-15 …
如果角A=86度,角B=94度,那么角A是角B的A直角B余角C补角D平角 2020-07-30 …
已知a,b是异面直线,a,b∈α,c,d∈β,求证:ac,bd是异面直线.没写太明白,已知a,b是 2020-08-02 …
在平面a内,若直线a⊥c,直线b⊥c,则a∥b;在空间,若直线a⊥c,直线b⊥c,则直线a与直线b不 2020-12-28 …
1、已知直线m经过两点(1,6)、(-3,-2),它和x轴、y轴的交点式B、A,直线n过点(2,-2 2021-01-15 …