早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•邯郸一模)若数列{an}的前n项和Sn满足2Sn=3an-1(n∈N*),等差数列{bn}满足b1=3a1,b3=S2+3.(1)求数列{an}、{bn}的通项公式;(2)设cn=bn3an,求数列{cn}的前n项和为Tn.

题目详情
(2014•邯郸一模)若数列{an}的前n项和Sn满足2Sn=3an-1(n∈N*),等差数列{bn}满足b1=3a1,b3=S2+3.
(1)求数列{an}、{bn}的通项公式;
(2)设cn=
bn
3an
,求数列{cn}的前n项和为Tn
▼优质解答
答案和解析
(1)当n=1时,2S1=3a1-1,∴a1=1,
当n≥2时,2an=Sn-2Sn-1=(3an-1)-(3an-1-1),即an=3an-1
∵a1=1≠0,
∴数列{an}是以a1=1为首项,3为公比的等比数列,∴an=3n−1,
设{bn}的公差为d,b1=3a1=3,b3=S2+3=7=2d+3,d=2.
∴bn=3+(n-1)×2=2n+1;
(2)∵cn=
bn
3an
=
2n+1
3n

Tn=
3
31
+
5
32
+
7
33
+…+
2n+1
3n
  ①
1
3
Tn=
3
32
+
5
33
+
7
34
+…+
2n+1
3n+1
  ②
由①-②得,
2
3
Tn=1+
2
32
+
2
33
+
2
34
+…+
2
3n
2n+1
3n+1

=1+2×
1
9
(1−(
1
3
)n−1)
1−
1
3
2n+1
3n+1

Tn=2−
n+2
3n
看了(2014•邯郸一模)若数列{...的网友还看了以下: