早教吧作业答案频道 -->数学-->
已知△ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连接BF.(1)如图1,求证:△AFB≌△ADC;(2)请判断图1
题目详情
已知△ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连接BF.
(1)如图1,求证:△AFB≌△ADC;
(2)请判断图1中四边形BCEF的形状,并说明理由;
(3)若D点在BC 边的延长线上,如图2,其它条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.

(1)如图1,求证:△AFB≌△ADC;
(2)请判断图1中四边形BCEF的形状,并说明理由;
(3)若D点在BC 边的延长线上,如图2,其它条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.

▼优质解答
答案和解析
证明:(1)∵△ABC和△ADF都是等边三角形,
∴AF=AD,AB=AC,∠FAD=∠BAC=60°,
又∵∠FAB=∠FAD-∠BAD,∠DAC=∠BAC-∠BAD,
∴∠FAB=∠DAC,
在△AFB和△ADC中,
,
∴△AFB≌△ADC(SAS);
(2)由①得△AFB≌△ADC,
∴∠ABF=∠C=60°.
又∵∠BAC=∠C=60°,
∴∠ABF=∠BAC,
∴FB∥AC,
又∵BC∥EF,
∴四边形BCEF是平行四边形;
(3)成立,理由如下:
∵△ABC和△ADE都是等边三角形,
∴AF=AD,AB=AC,∠FAD=∠BAC=60°,
又∵∠FAB=∠FAD-∠BAD,∠DAC=∠BAC-∠BAD,
∴∠FAB=∠DAC,
在△AFB和△ADC中,
,
∴△AFB≌△ADC(SAS);
∴∠AFB=∠ADC.
又∵∠ADC+∠DAC=60°,∠EAF+∠DAC=60°,
∴∠ADC=∠EAF,
∴∠AFB=∠EAF,
∴BF∥AE,
又∵BC∥EF,
∴四边形BCEF是平行四边形.
∴AF=AD,AB=AC,∠FAD=∠BAC=60°,
又∵∠FAB=∠FAD-∠BAD,∠DAC=∠BAC-∠BAD,
∴∠FAB=∠DAC,
在△AFB和△ADC中,
|
∴△AFB≌△ADC(SAS);
(2)由①得△AFB≌△ADC,
∴∠ABF=∠C=60°.
又∵∠BAC=∠C=60°,
∴∠ABF=∠BAC,
∴FB∥AC,
又∵BC∥EF,
∴四边形BCEF是平行四边形;
(3)成立,理由如下:
∵△ABC和△ADE都是等边三角形,
∴AF=AD,AB=AC,∠FAD=∠BAC=60°,
又∵∠FAB=∠FAD-∠BAD,∠DAC=∠BAC-∠BAD,
∴∠FAB=∠DAC,
在△AFB和△ADC中,
|
∴△AFB≌△ADC(SAS);
∴∠AFB=∠ADC.
又∵∠ADC+∠DAC=60°,∠EAF+∠DAC=60°,
∴∠ADC=∠EAF,
∴∠AFB=∠EAF,
∴BF∥AE,
又∵BC∥EF,
∴四边形BCEF是平行四边形.
看了已知△ABC是等边三角形,D是...的网友还看了以下:
一质点从A开始做初速度为零的匀加速直线运动中,先后经过B点和C点.已知它的加速度为10m/s2,经 2020-05-14 …
三点共线定理:平面上三点A.B.C共线的充要条件是:存在实数a.b,使OC=aOA+bOB.其中a 2020-05-14 …
在平面直角坐标系x0y中,抛物线y=x2+bx+c与X轴交于A、B两点(点A在点B的左侧)与Y轴交 2020-05-16 …
汽车从A点由静止开始沿直线A.CB先做匀加速直线运动,第4秒末通C点时关闭发动机开始做匀减速直线运 2020-05-16 …
大哥大姐们,帮一哈,A、B、C三点在同一直线上,一个物体自A点从静止开始作匀加速直线运动,经过B点 2020-06-05 …
如图所示质点在直线A、B、C上作匀变速直线运动,若在A点时的速度是5m/s,经3s到达B点时速度是 2020-07-10 …
下列说法错误的是()。A.无数条直线可交于一点B.直线的垂线有无数条,但过一点与垂直的直线只有一条 2020-08-02 …
如图,在直角坐标系中,抛物线y=x^2+bx+c与X轴交于A,B两点,与Y轴交于点C,点B的坐标为 2020-08-02 …
1.什么是准线?不要复制baike里面的一大段给我看,我已经看过了,看不懂!过极点A作极径R垂线与过 2020-11-26 …
谁能帮我解一道初三的函数题目在平面直角坐标系xOy中,抛物线Y=x²+bx+c与X轴交与AB两点(点 2021-01-22 …