早教吧作业答案频道 -->其他-->
(初三)如图,△ABC中,AB=AC,I为△ABC的内心,AI的延长线交△ABC的外接圆于点D,过点I作BC的平行线分别交AB、AC于E、F,若O是△DEF外接圆的圆心.证明:(1)O点在线段AD上;(2)AB、AC是⊙
题目详情
(初三)如图,△ABC中,AB=AC,I为△ABC的内心,AI的延长线交△ABC的外接圆于点D,过点I作BC的平行线分别交AB、AC于E、F,若O是△DEF外接圆的圆心.证明:(1)O点在线段AD上;
(2)AB、AC是⊙O的切线.
(初二)如图,四边形ABCD中,∠ADC=60°,∠ABC=30°,DA=DC,求证,BD2=AB2+BC2.

▼优质解答
答案和解析
(初三)证明:(1)∵AB=AC,I为△ABC的内心,即AI平分∠BAC
∴
又∵BC∥EF,
∴AI垂直平分EF,
而O是△DEF外接圆的圆心,则O点一定在EF的垂直平分线上,
∴O点在线段AD上;
(2)连接OE,OF,BD,BI,如图,
∵AD垂直平分BC,
∴AD过△ABC外接圆的圆心,即AD为△ABC外接圆的直径,
∴∠ABD=90°,而∠AIE=90°,
∴I、E、B、D四点共圆,
∴∠IDE=∠IBE=∠IBC,而∠EOI=2∠EDI,
∴∠EOI=∠ABC,而∠ABC+∠BAD=90°,
∴∠EOI+∠BAD=90°,即∠OEA=90°,
∴AB是⊙O的切线.同理可得AC是⊙O的切线.
(初二)证明:
连接AC,因为AD=DC,∠ADC=60°
则△ACD是等边三角形,
过B作BE⊥AB,使BE=BC,连接CE,AE,
则∠EBC=90°-∠ABC=90°-30°=60°,
∴△BCE是正三角形,
又∠ACE=∠ACB+∠BCE=∠ACB+60°
∠DCB=∠ACB+∠ACD=∠ACB+60°
∴∠ACE=∠DCB
又DC=AC,BC=CE
所以△DCB≌△ACE
所以AE=BD
在直角三角形ABE中AE2=AB2+BE2,
即BD2=AB2+BC2.
∴
又∵BC∥EF,
∴AI垂直平分EF,
而O是△DEF外接圆的圆心,则O点一定在EF的垂直平分线上,
∴O点在线段AD上;
(2)连接OE,OF,BD,BI,如图,

∵AD垂直平分BC,
∴AD过△ABC外接圆的圆心,即AD为△ABC外接圆的直径,
∴∠ABD=90°,而∠AIE=90°,
∴I、E、B、D四点共圆,
∴∠IDE=∠IBE=∠IBC,而∠EOI=2∠EDI,
∴∠EOI=∠ABC,而∠ABC+∠BAD=90°,
∴∠EOI+∠BAD=90°,即∠OEA=90°,
∴AB是⊙O的切线.同理可得AC是⊙O的切线.
(初二)证明:
连接AC,因为AD=DC,∠ADC=60°
则△ACD是等边三角形,
过B作BE⊥AB,使BE=BC,连接CE,AE,

则∠EBC=90°-∠ABC=90°-30°=60°,
∴△BCE是正三角形,
又∠ACE=∠ACB+∠BCE=∠ACB+60°
∠DCB=∠ACB+∠ACD=∠ACB+60°
∴∠ACE=∠DCB
又DC=AC,BC=CE
所以△DCB≌△ACE
所以AE=BD
在直角三角形ABE中AE2=AB2+BE2,
即BD2=AB2+BC2.
看了(初三)如图,△ABC中,AB...的网友还看了以下:
(2009•塘沽区一模)如图,在△ABC中AC=BC,∠ACB=90°,以BC为直径作⊙O,连接O 2020-05-13 …
矩形ABCD中,点O是AC的中点,AC=2AB,延长AB至G,使BG=AB,连接GO交BC于E,延 2020-05-16 …
在等腰三角形ABC中,AC=BC,COD是底边上的高线,点P是线段CD上不与端点重合的任意一点,连 2020-05-20 …
延长线段MN到P,使NP=MN,则N是线段MP的()点,MN=()MP,MP=()NP已知线段AB 2020-05-23 …
如图,在△ABC中,∠A=90°,AB=AC,D为BC中点(1)如图1,点E、F分别是AB、AC上 2020-05-24 …
已知,如图,D,E分别是AB,AC上的点,AC=BC=BD,AD=AE,DE=CE,求∠B的度数, 2020-06-06 …
求救已知线段AB=20cm,点M是线段AB的中点,点C是线段AB的延长线上的点,AC=3BC,点D 2020-06-06 …
(2013•吴江市模拟)如图,已知在△ABC中,AB=AC,D是△ABC外接圆劣弧AC上的点(不与 2020-06-23 …
如图,在Rt△ABC中,∠ACB=50°,CD⊥AB,M是CD上的点,DH⊥BM于H,DH的延长线 2020-06-27 …
D为△ABC的边AC的延长线上一点作∠BDE=∠A连CE使∠ECD=ABC,若AB=kAC图在这里 2020-06-27 …