早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图1,已知线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)

题目详情
如图1,已知线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2
,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:
(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:;
(2)仔细观察,在图2中“8字形”的个数:个;
(3)在图2中,若∠D=40°,∠B=30°,试求∠P的度数;
▼优质解答
答案和解析
:(1)在△AOD中,∠AOD=180°-∠A-∠D,
在△BOC中,∠BOC=180°-∠B-∠C,
∵∠AOD=∠BOC(对顶角相等),
∴180°-∠A-∠D=180°-∠B-∠C,
∴∠A+∠D=∠B+∠C;
(2)交点有点M、O、N,
以M为交点有1个,为△AMD与△CMP,
以O为交点有4个,为△AOD与△COB,△AOM与△CON,△AOM与△COB,△CON与△AOD,
以N为交点有1个,为△ANP与△CNB,
所以,“8字形”图形共有6个;
(3)∵∠D=40°,∠B=36°,
∴∠OAD+40°=∠OCB+36°,
∴∠OCB-∠OAD=4°,
∵AP、CP分别是∠DAB和∠BCD的角平分线,
∴∠DAM=
1
2
∠OAD,∠PCM=
1
2
∠OCB,
又∵∠DAM+∠D=∠PCM+∠P,
∴∠P=∠DAM+∠D-∠PCM=
1
2
(∠OAD-∠OCB)+∠D=
1
2
×(-4°)+40°=38°;
(4)根据“8字形”数量关系,∠OAD+∠D=∠OCB+∠B,∠DAM+∠D=∠PCM+∠P,
所以,∠OCB-∠OAD=∠D-∠B,∠PCM-∠DAM=∠D-∠P,
∵AP、CP分别是∠DAB和∠BCD的角平分线,
∴∠DAM=
1
2
∠OAD,∠PCM=
1
2
∠OCB,

1
2
(∠D-∠B)=∠D-∠P,
整理得,2∠P=∠B+∠D.