早教吧作业答案频道 -->数学-->
设a、b、c为正数,且a^2+b^2+c^2=3,证明:1/(1+2ab)+1/(1+2bc)+1/(1+2ca)>=1.a、b、c为正数,故1/(1+2ab)+1/(1+2bc)+1/(1+2ca)≥1/(1+a^2+b^2)+1/(1+b^2+c^2)+1/(1+c^2+a^2)≥3*{3/[(a^2+b^2)+(b^2+c^2)+(c^2+a^2)+3]}=9/[3+2(a^2+b^2+c^2)]=1即1/
题目详情
设a、b、c为正数,且a^2+b^2+c^2=3,证明:1/(1+2ab)+1/(1+2bc)+1/(1+2ca)>=1.
a、b、c为正数,故
1/(1+2ab)+1/(1+2bc)+1/(1+2ca)
≥1/(1+a^2+b^2)+1/(1+b^2+c^2)+1/(1+c^2+a^2)
≥3*{3/[(a^2+b^2)+(b^2+c^2)+(c^2+a^2)+3]}
=9/[3+2(a^2+b^2+c^2)]
=1
即1/(1+2ab)+1/(1+2bc)+1/(1+2ca)≥1.
如果你会,帮我细细讲讲好么,
a、b、c为正数,故
1/(1+2ab)+1/(1+2bc)+1/(1+2ca)
≥1/(1+a^2+b^2)+1/(1+b^2+c^2)+1/(1+c^2+a^2)
≥3*{3/[(a^2+b^2)+(b^2+c^2)+(c^2+a^2)+3]}
=9/[3+2(a^2+b^2+c^2)]
=1
即1/(1+2ab)+1/(1+2bc)+1/(1+2ca)≥1.
如果你会,帮我细细讲讲好么,
▼优质解答
答案和解析
主要用到两个不等式
a²+b²≥2ab
------------
真分数相加后结果≥分子分母分别相加后结果*真分数个数
即a/b+m/n≥2(a+m)/(b+n)其中a,b,m,n为正数,≥1,a
a²+b²≥2ab
------------
真分数相加后结果≥分子分母分别相加后结果*真分数个数
即a/b+m/n≥2(a+m)/(b+n)其中a,b,m,n为正数,≥1,a
看了设a、b、c为正数,且a^2+...的网友还看了以下:
tanA/tanB=(2c-b)/b.tanA/tanB=(2c-b)/b.sinA*cosB/( 2020-04-09 …
代数式的应用题:1.一种蓝喉蜂鸟的心跳频率是鸟类中最快的,每分心跳的次数大约是1260次,写出这种 2020-06-26 …
求1+2+2^2+2^3+2^4+…+2^2014的值.设S=1+2+2^2+2^3+2^4+…+ 2020-07-09 …
因式分解:1.4b^2-a^2+a+2b2.4b^2-a^2+1+4b3.(a-2b)^2+3a- 2020-07-18 …
1,关于力的合成,如果两个分力的夹角是α,那么F=根号下(F1^2+F2^2+2F1F2cosα) 2020-08-02 …
有三个等式:(a+b)^2=a^2+2ab+b^2(a+b+c)^2=a^2+b^2+c^2+2a 2020-08-03 …
xyz=1,x+y+z=2,x^2+y^2+z^2=3,求x,y,z我解:xy=1/z,x+y=2- 2020-10-31 …
观察下列各式然后回答问题:1-1/2^2=1/2*2/3,1-1/3^2+2/3*4/3,1-1/4 2020-11-01 …
已知a,b属于正实数a^2+b^2/2=1求y=a√(1+b^2)的最大值参考书上是用y^2=[a√ 2020-12-31 …
这些题怎么数学解1已知(x+m)^2(x^2-2x+3)+x(x+1)中不含x^2项求m的值2已知a 2020-12-31 …