早教吧作业答案频道 -->数学-->
设a、b、c为正数,且a^2+b^2+c^2=3,证明:1/(1+2ab)+1/(1+2bc)+1/(1+2ca)>=1.a、b、c为正数,故1/(1+2ab)+1/(1+2bc)+1/(1+2ca)≥1/(1+a^2+b^2)+1/(1+b^2+c^2)+1/(1+c^2+a^2)≥3*{3/[(a^2+b^2)+(b^2+c^2)+(c^2+a^2)+3]}=9/[3+2(a^2+b^2+c^2)]=1即1/
题目详情
设a、b、c为正数,且a^2+b^2+c^2=3,证明:1/(1+2ab)+1/(1+2bc)+1/(1+2ca)>=1.
a、b、c为正数,故
1/(1+2ab)+1/(1+2bc)+1/(1+2ca)
≥1/(1+a^2+b^2)+1/(1+b^2+c^2)+1/(1+c^2+a^2)
≥3*{3/[(a^2+b^2)+(b^2+c^2)+(c^2+a^2)+3]}
=9/[3+2(a^2+b^2+c^2)]
=1
即1/(1+2ab)+1/(1+2bc)+1/(1+2ca)≥1.
如果你会,帮我细细讲讲好么,
a、b、c为正数,故
1/(1+2ab)+1/(1+2bc)+1/(1+2ca)
≥1/(1+a^2+b^2)+1/(1+b^2+c^2)+1/(1+c^2+a^2)
≥3*{3/[(a^2+b^2)+(b^2+c^2)+(c^2+a^2)+3]}
=9/[3+2(a^2+b^2+c^2)]
=1
即1/(1+2ab)+1/(1+2bc)+1/(1+2ca)≥1.
如果你会,帮我细细讲讲好么,
▼优质解答
答案和解析
主要用到两个不等式
a²+b²≥2ab
------------
真分数相加后结果≥分子分母分别相加后结果*真分数个数
即a/b+m/n≥2(a+m)/(b+n)其中a,b,m,n为正数,≥1,a
a²+b²≥2ab
------------
真分数相加后结果≥分子分母分别相加后结果*真分数个数
即a/b+m/n≥2(a+m)/(b+n)其中a,b,m,n为正数,≥1,a
看了设a、b、c为正数,且a^2+...的网友还看了以下:
已知A(1/3,1/a),B(1/4,1/b),C(1/5,1/c)满足a/(b+c)=1/3,b 2020-05-16 …
速求:ac(a+c)(a-c)+ba(b+a)(b-a)+cb(c+b)(c-b)怎样化为a^3( 2020-06-03 …
A为3维行向量,B为3维列向量,A,B满足A*B=2,则矩阵B*A的非零特征值为答案的解法是设C= 2020-06-20 …
设a,b,c∈R,证明a^2acc^23b(abc)≥0,并指出等号何时成立问题补充:证明:不妨设 2020-06-23 …
关于一元三次方程的根,高分请踊跃回答!我已经化简了;x1=1/6/a*z-2/y/a/z-1/3* 2020-07-09 …
条件等式求值~帮忙做一下...1.已知a+b+c=1,a^2+b^2+c^2=2,a^3+b^3+ 2020-07-24 …
三项立方和公式为什么要-3abc公式a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^ 2020-07-30 …
(a+b+c)^3-(b+c-a)^3-(c+a-b)^3-(a+b-c)^3=[(a+b+c)^ 2020-08-02 …
已知非零实数a、b、c满足a+b+c=0求证:⑴a^3+b^3+c^3=3abc⑵[(a-b)/c+ 2020-12-07 …
[a^3(c-b)+b^3(a-c)+c^3(b-a)]/[a^2(c-b)+b^2(a-c)+c^ 2020-12-22 …