早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2013•山东)如图所示,在三棱锥P-ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH.(1)求证:AB∥GH;(2)求二面角D-GH-E的

题目详情
(2013•山东)如图所示,在三棱锥P-ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH.
(1)求证:AB∥GH;
(2)求二面角D-GH-E的余弦值.
▼优质解答
答案和解析
(1)证明:如图,

∵C,D为AQ,BQ的中点,∴CD∥AB,
又E,F分别AP,BP的中点,∴EF∥AB,
则EF∥CD.又EF⊂平面EFQ,∴CD∥平面EFQ.
又CD⊂平面PCD,且平面PCD∩平面EFQ=GH,∴CD∥GH.
又AB∥CD,∴AB∥GH;
(2)由AQ=2BD,D为AQ的中点可得,三角形ABQ为直角三角形,
以B为坐标原点,分别以BA、BQ、BP所在直线为x、y、z轴建立空间直角坐标系,
设AB=BP=BQ=2,
则D(1,1,0),C(0,1,0),E(1,0,1),F(0,0,1),
因为H为三角形PBQ的重心,所以H(0,
2
3
2
3
).
DC
=(−1,0,0),
CH
=(0,−
1
3
2
3
)
EF
=(−1,0,0),
FH
=(0,
2
3
,−
1
3
).
设平面GCD的一个法向量为
m
=(x1,y1,z1)
作业帮用户 2016-11-23 举报
问题解析
(1)由给出的D,C,E,F分别是AQ,BQ,AP,BP的中点,利用三角形中位线知识及平行公理得到DC平行于EF,再利用线面平行的判定和性质得到DC平行于GH,从而得到AB∥GH;
(2)由题意可知BA、BQ、BP两两相互垂直,以B为坐标原点建立空间直角坐标系,设出BA、BQ、BP的长度,标出点的坐标,求出一些向量的坐标,利用二面角的两个面的法向量所成的角的余弦值求解二面角D-GH-E的余弦值.
名师点评
本题考点:
二面角的平面角及求法;直线与平面平行的性质.
考点点评:
本题考查了直线与平面平行的性质,考查了二面角的平面角及其求法,考查了学生的空间想象能力和思维能力,考查了计算能力,解答此题的关键是正确求出H点的坐标,是中档题.
我是二维码 扫描下载二维码
看了(2013•山东)如图所示,在...的网友还看了以下: