早教吧作业答案频道 -->数学-->
如图,点B是x轴正半轴上一动点,点A是线段OB垂直平分线上的点,P为y轴正半轴上一动点,且∠OPB=∠OAB=α(α为锐角).(1)求证:∠AOP=∠ABP;(2)如图1,若∠AOB=60°,PO=2,求:①PB的长;
题目详情
如图,点B是x轴正半轴上一动点,点A是线段OB垂直平分线上的点,P为y轴正半轴上一动点,且∠OPB=∠OAB=α(α为锐角).

(1)求证:∠AOP=∠ABP;
(2)如图1,若∠AOB=60°,PO=2,求:①PB的长;②PA的长.
(3)已知,点A的纵坐标是3,问当点B在x轴正半轴上移动时(如图2),PO+PB的长是否会发生改变?若不变,求出PO+PB的值;若会改变,请说明理由.

(1)求证:∠AOP=∠ABP;
(2)如图1,若∠AOB=60°,PO=2,求:①PB的长;②PA的长.
(3)已知,点A的纵坐标是3,问当点B在x轴正半轴上移动时(如图2),PO+PB的长是否会发生改变?若不变,求出PO+PB的值;若会改变,请说明理由.
▼优质解答
答案和解析
(1)证明:∵∠OPB=∠OAB,且∠OMP=∠AMB,
∴∠AOP=∠ABP;
(2)∵点A为OB垂直平分线上的点,
∴OA=AB,
∵∠AOB=60°,
∴△AOB为等边三角形,
∴∠OPB=∠OAB=∠OBA=60°,
∵∠POB=90°,
∴∠OBP=30°,
∴PB=2OP=4,BM平分∠ABO,
∴BM⊥OA,AM=OM,
∴PA=OP=2;
(3)PO+PB的长不变,理由为:
延长BA交y轴于点D,过A作AH⊥x轴,AE⊥y轴;
∵OA=AB,
∴∠AOB=∠ABO,
∵∠ABO+∠ODB=∠AOB+∠AOD=90°,
∴∠AOD=∠ODB,
∴∠ODB=∠ABP,
∴AD=OA,BP=PD,
∴E为OD中点,
∵OE=AH=3,
∴PO+PB=OP+PH+HB=OP+PE+OE=2OE=6.

∴∠AOP=∠ABP;
(2)∵点A为OB垂直平分线上的点,
∴OA=AB,
∵∠AOB=60°,
∴△AOB为等边三角形,
∴∠OPB=∠OAB=∠OBA=60°,
∵∠POB=90°,
∴∠OBP=30°,
∴PB=2OP=4,BM平分∠ABO,
∴BM⊥OA,AM=OM,
∴PA=OP=2;
(3)PO+PB的长不变,理由为:
延长BA交y轴于点D,过A作AH⊥x轴,AE⊥y轴;
∵OA=AB,
∴∠AOB=∠ABO,
∵∠ABO+∠ODB=∠AOB+∠AOD=90°,
∴∠AOD=∠ODB,
∴∠ODB=∠ABP,
∴AD=OA,BP=PD,
∴E为OD中点,
∵OE=AH=3,
∴PO+PB=OP+PH+HB=OP+PE+OE=2OE=6.
看了如图,点B是x轴正半轴上一动点...的网友还看了以下:
如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度. 可以看到终点表示 2020-04-05 …
一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是- 2020-04-05 …
如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度.从上图可以看出,a 2020-04-05 …
如图,点A(m,m+1),B(m+3,m-1)都在反比例函数y=x分之k的图像上.(1)会的(2) 2020-04-08 …
如图,直线y=x与双曲线y=kx(x>0)相交于点A,点P在双曲线上,过P做PB∥y轴,交直线y= 2020-05-13 …
如图①,点A(a,6)在第一象限,点B(0,b)在y轴负半轴上,且a、b满足(a-4)2+|b-4 2020-06-04 …
初二年级数学探究题图片没有上传请见谅!如图,点A是反比例函数y=4/x(x>0)上的一个动点,过点 2020-06-23 …
如图,点A(m,m+1),B(m+3,m-1)都在反比例函数y=k/x的图像上如果M为x轴上一点, 2020-06-29 …
(本题满分13分)如图,点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点.点P在椭圆上,且位 2020-07-31 …
如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(2012•临沂)如图 2020-11-13 …