早教吧作业答案频道 -->其他-->
如图,已知△ABC和△ABD均为等腰直角三角形,∠ACB=∠BAD=90°,点P为边AC上任意一点(点P不与A、C两点重合),作PE⊥PB交AD于点E,交AB于点F.(1)求证:∠AEP=∠ABP.(2)猜想线段PB、PE的数
题目详情
如图,已知△ABC和△ABD均为等腰直角三角形,∠ACB=∠BAD=90°,点P为边AC上任意一点(点P不与A、C两点重合),作PE⊥PB交AD于点E,交AB于点F.
(1)求证:∠AEP=∠ABP.
(2)猜想线段PB、PE的数量关系,并证明你的猜想.
(3)若P为AC延长线上任意一点(如图②),PE交DA的延长线于点E,其他条件不变,(2)中的结论是否成立?请证明你的结论.

(1)求证:∠AEP=∠ABP.
(2)猜想线段PB、PE的数量关系,并证明你的猜想.
(3)若P为AC延长线上任意一点(如图②),PE交DA的延长线于点E,其他条件不变,(2)中的结论是否成立?请证明你的结论.

▼优质解答
答案和解析
证明:(1)∵PE⊥PB,
∴∠EPB=90°,
∵∠BAD=90°,
∴∠AEP=90°-∠1,∠ABP=90°-∠2,
∵∠1=∠2,
∴∠AEP=∠ABP;
(2)PB=PE,
如图3,过P作PM⊥AC交AB与M,
在等腰直角三角形ABC中,∠BAC=45°,
∴∠PAM=∠AMP=45°,
∴PA=PM,
∵∠PAE=45°+90°=135°,∠PMB=180°-45°=135°,
∴∠PAE=∠PMB,
在△AEP和△MBP中
,
∴△APE≌△MPB(AAS),
∴PB=PE;
(3)成立;
如图4,过P作PM⊥AB于点M,作PN⊥DA交DA延长线于点N,
∵∠PAB=∠PAN=45°,
∴PM=PN,
∵∠N=∠PMA=∠MAE=90°,
∴四边形ANPM是矩形,∴∠MPN=90°.
∵∠3+∠MPE=∠4+∠MPE=90°,
∴∠3=∠4,
∵∠PMB=∠N=90°,
在△PBM和△PEN中
,
∴△PBM≌△PEN(ASA),
∴PB=PE.
∴∠EPB=90°,
∵∠BAD=90°,
∴∠AEP=90°-∠1,∠ABP=90°-∠2,
∵∠1=∠2,
∴∠AEP=∠ABP;
(2)PB=PE,
如图3,过P作PM⊥AC交AB与M,
在等腰直角三角形ABC中,∠BAC=45°,
∴∠PAM=∠AMP=45°,
∴PA=PM,
∵∠PAE=45°+90°=135°,∠PMB=180°-45°=135°,
∴∠PAE=∠PMB,
在△AEP和△MBP中
|

∴△APE≌△MPB(AAS),
∴PB=PE;
(3)成立;
如图4,过P作PM⊥AB于点M,作PN⊥DA交DA延长线于点N,
∵∠PAB=∠PAN=45°,
∴PM=PN,
∵∠N=∠PMA=∠MAE=90°,
∴四边形ANPM是矩形,∴∠MPN=90°.
∵∠3+∠MPE=∠4+∠MPE=90°,
∴∠3=∠4,
∵∠PMB=∠N=90°,
在△PBM和△PEN中
|
∴△PBM≌△PEN(ASA),
∴PB=PE.
看了如图,已知△ABC和△ABD均...的网友还看了以下:
问两道圆锥曲线的题1.已知定点A[-2,√3],F是椭圆[x^2/16]+[y^2/12]=1的右焦 2020-03-30 …
“已知线段AD=8.已知线段AD=8,平面上有一点P.1,若PA=5,PB=多少时,点P在AB上? 2020-05-14 …
已知集合M={-3,-2,-1,0,1,2,},若a,b属于M,平面直角坐标系内点P的坐标是(a, 2020-05-16 …
曲线和方程的题平面内A、B、C为l上的三个定点,AB=2,BC=1,动点P不在l上,且恒有∠APB 2020-05-17 …
如图,已知正方形ABCD的边长为2√3,点M是AD的中点,P是线段MD上的一动点(P不与M.D重合 2020-05-21 …
在等边△ABC中,AB=2,点P为AB边上任一点,过点P作PE垂直BC于E,过E作EF垂直AC于F 2020-07-30 …
已知:如图,在Rt△ABC中,∠ACB=90°,点P是边AB上的一个动点,联结CP,过点B作BD⊥C 2020-12-07 …
已知:如图,在Rt△ABC中,∠ACB=90°,点P是边AB上的一个动点,联结CP,过点B作BD⊥C 2020-12-07 …
做投掷2颗骰子的试验,x表示第一颗骰子出现的点数,y表示第二颗骰子出现的点数,P(x,y)表示P点坐 2020-12-30 …
如图,在△ABC中,∠C=90°,P为AB上一点,且点P不与点A重合,过P作PE⊥AB交AC边于点E 2021-01-11 …