早教吧作业答案频道 -->数学-->
如图,在△ABC中,∠ABC=2∠C,∠BAC的平分线AD交BC于D,过B作BE⊥AD交AD于F,交AC于E.(1)求证:△ABE为等腰三角形;(2)已知AC=11,AB=6,求BD长.
题目详情
如图,在△ABC中,∠ABC=2∠C,∠BAC的平分线AD交BC于D,过B作BE⊥AD交AD于F,交AC于E.

(1)求证:△ABE为等腰三角形;
(2)已知AC=11,AB=6,求BD长.

(1)求证:△ABE为等腰三角形;
(2)已知AC=11,AB=6,求BD长.
▼优质解答
答案和解析
(1)证明:∵BE⊥AD,
∴∠AFE=∠AFB=90°,
又∵AD平分∠BAC,
∴∠EAF=∠BAF,
又∵在△AEF和△ABF中
∠AFE+∠EAF+∠AEF=180°,∠AFB+∠BAF+∠ABF=180°
∴∠AEF=∠ABF,
∴AE=AB,
∴△ABE为等腰三角形;
(2) 连接DE,
∵AE=AB,AD平分∠BAC,
∴AD垂直平分BE,
∴BD=ED,
∴∠DEF=∠DBF,
∵∠AEF=∠ABF,
∴∠AED=∠ABD,
又∵∠ABC=2∠C,
∴∠AED=2∠C,
又∵△CED中,∠AED=∠C+∠EDC,
∴∠C=∠EDC,
∴EC=ED,
∴CE=BD.
∴BD=CE=AC-AE=AC-AB=11-6=5.

∴∠AFE=∠AFB=90°,
又∵AD平分∠BAC,
∴∠EAF=∠BAF,
又∵在△AEF和△ABF中
∠AFE+∠EAF+∠AEF=180°,∠AFB+∠BAF+∠ABF=180°
∴∠AEF=∠ABF,
∴AE=AB,
∴△ABE为等腰三角形;
(2) 连接DE,
∵AE=AB,AD平分∠BAC,
∴AD垂直平分BE,
∴BD=ED,
∴∠DEF=∠DBF,
∵∠AEF=∠ABF,
∴∠AED=∠ABD,
又∵∠ABC=2∠C,
∴∠AED=2∠C,
又∵△CED中,∠AED=∠C+∠EDC,
∴∠C=∠EDC,
∴EC=ED,
∴CE=BD.
∴BD=CE=AC-AE=AC-AB=11-6=5.
看了如图,在△ABC中,∠ABC=...的网友还看了以下:
正方体ABCD-A’B"C"D"中P,Q,R分别是AB,AD,BC的中点,那么正方体的过P,Q,R 2020-05-13 …
1.设a.b.c分别是三角形ABC的三条边,且a/b=a+1/a+b+c,是判断∠A,∠B的关系. 2020-05-13 …
在四边形ABCD中,AB=a,BC=b,CD=c,DA=d,且a·b=b·c=c·d=d·a,四边 2020-06-03 …
一题几何选择题~SOS题目:一个四边形的边长依次是A,B,C,D.且A*A+B*B+C*C+D*D 2020-06-05 …
函数题长方形ABCD中,AB=3,AD=4,动点P沿A\B\C\D的路线由A运动到D,长方形ABC 2020-06-27 …
两个边长相等的正方形ABCD和A'B'C'D',且正方形A'B'C'D'的顶点A'在正方形ABCD 2020-07-11 …
三角形加三角形=a,三角形减三角形=b,三角形除以三角形=d,三角形乘三角形=c,a+b+c+d= 2020-07-19 …
C中求三角形面积问题#include#includevoidmain(){doublea,b,c, 2020-07-23 …
已知向量OA=a,向量OB=b,向量OC=c,向量OD=d,且四边形ABCD为平行四边形,则()A 2020-07-24 …
在三角形ABC和三角形A'B'C'中CD,C'D'分别是高,并且AC=A'C;,CD=C'D',∠A 2020-11-28 …