早教吧作业答案频道 -->数学-->
如图,在△ABC中,∠ABC=90°,∠BAC=60°,△ACD是等边三角形,E是AC的中点,连接BE并延长,交DC于点F,求证:(1)△ABE≌△CFE;(2)四边形ABFD是平行四边形.
题目详情
如图,在△ABC中,∠ABC=90°,∠BAC=60°,△ACD是等边三角形,E是AC的中点,连接BE并延长,交DC于点F,求证:

(1)△ABE≌△CFE;
(2)四边形ABFD是平行四边形.

(1)△ABE≌△CFE;
(2)四边形ABFD是平行四边形.
▼优质解答
答案和解析
证明:(1)∵△ACD是等边三角形,
∴∠DCA=60°,
∵∠BAC=60°,
∴∠DCA=∠BAC,
在△ABE与△CFE中,
,
∴△ABE≌△CFE;
(2)∵E是AC的中点,
∴BE=EA,
∵∠BAE=60°,
∴△ABE是等边三角形,
∴△CEF是等边三角形,
∴∠CFE=60°,
∵△ACD是等边三角形,
∴∠CDA=∠DCA=60°,
∴∠CFE=∠CDA,
∴BF∥AD,
∵∠DCA=∠BAC=60°,
∴AB∥DC,
∴四边形ABFD是平行四边形.
∴∠DCA=60°,
∵∠BAC=60°,
∴∠DCA=∠BAC,
在△ABE与△CFE中,
|
∴△ABE≌△CFE;
(2)∵E是AC的中点,
∴BE=EA,
∵∠BAE=60°,
∴△ABE是等边三角形,
∴△CEF是等边三角形,
∴∠CFE=60°,
∵△ACD是等边三角形,
∴∠CDA=∠DCA=60°,
∴∠CFE=∠CDA,
∴BF∥AD,
∵∠DCA=∠BAC=60°,
∴AB∥DC,
∴四边形ABFD是平行四边形.
看了如图,在△ABC中,∠ABC=...的网友还看了以下:
已知集合A={x/x=3n+1,n∈Z}B={x/x=3n+2,n∈Z}M={x/x=6n+3,n 2020-04-05 …
若集合A={x丨x=3n+1,n∈Z},B={x丨x=3n+2,n∈Z},M={x丨x=6n+3, 2020-04-05 …
已知集合A={x|x=3x+1,n∈Z},B={x|x=3n+2,n∈Z},M={x|x=6n+3 2020-04-05 …
1、因为15除5=3,所以5是()的因数,15是5的().2、20以内的自然数中,奇数有1、因为1 2020-04-08 …
解一元一次方程已知关于x的方程a-2/2=bx-3的解是x=2其中a≠0,且b≠0,求代数式a/b 2020-04-09 …
a和b都是整数,且a÷b=2…1,下列说法正确的是()A.a是偶数B.a是奇数C.b是偶数D.b是 2020-04-09 …
若a+b=b+c,则a-b(c为整式)若a=b,则ac=bc(c为整式)若ac=bc,则a=b(c 2020-04-22 …
现有a×a、b×b的正方形纸片(a≠b)和a×b的矩形纸片若干块.现选用一块a×a、三块b×b的正 2020-05-17 …
急啊!~A∩A=?A∩ø=?A∩B=?B∩A=?A∪A=?A∪ø=?拜托各位了3QA∩A=A∩=A 2020-06-12 …
(10分)如图所示,A、B是竖直放置的中心带有小孔的平行金属板,两板间的电压为U1=100V,C、 2020-06-14 …