早教吧作业答案频道 -->数学-->
如图,在正方形ABCD中,AB=1,E,F分别是边BC,CD上的点,连接EF、AE、AF,过A作AH⊥EF于点H.若EF=BE+DF,那么下列结论:①AE平分∠BEF;②FH=FD;③∠EAF=45°;④S△EAF=S△ABE+S△ADF;⑤△CEF的周长为
题目详情
如图,在正方形ABCD中,AB=1,E,F分别是边BC,CD上的点,连接EF、AE、AF,过A作AH⊥EF于点H.若EF=BE+DF,那么下列结论:①AE平分∠BEF;②FH=FD;③∠EAF=45°;④S△EAF=S△ABE+S△ADF;⑤△CEF的周长为2.其中正确结论的个数是( )
A. 2
B. 3
C. 4
D. 5
A. 2B. 3
C. 4
D. 5
▼优质解答
答案和解析
如图:把△ABE绕点A逆时针旋转90度,得到△ADG,则△ABE≌△ADG,∠EAG=∠BAD=90°,
∴∠ABE=∠ADG=90°,AE=AG,BE=DG,
∴∠FDG=∠FDA+∠ADG=90°+90°=180°,
∴F、D、G三点共线.
∵EF=BE+DF,
∴EF=DG+DF=GF.
∵在△AGF与△AEF中,
,
∴△AGF≌△AEF(SSS),
∴∠GAF=∠EAF,∠1=∠2,
∵∠GAF+∠EAF=∠EAG=90°,
∴∠EAF=
×90°=45°,故③正确;
∵∠1=∠2,AD⊥FG于D,AH⊥EF于H,
∴AD=AH,
∵AD=AB,
∴AH=AB,
又∵AH⊥EF于H,AB⊥BC于B,
∴AE平分∠BEF,故①正确;
∵AE平分∠BEF,
∴∠AEB=∠AEH,
∵∠AEB+∠BAE=90°,∠AEH+∠HAE=90°,
∴∠BAE=∠HAE,
又∵EH⊥AH于H,EB⊥AB于B,
∴BE=HE,
∵BE=DG,
∴HE=DG,
∵EF=HE+FH,GF=DG+FD,EF=GF,
∴FH=FD,故②正确;
∵△AEF≌△AGF,
∴S△EAF=S△GAF.
∵△ABE≌△ADG,
∴S△GAF=S△ADG+S△ADFS△ABE+S△ADF,
∴S△EAF=S△ABE+S△ADF,故④正确;
∵EF=HE+FH,BE=HE,FH=FD,
∴EF=BE+FD,
∴△CEF的周长=EF+EC+CF=BE+FD+EC+CF=BC+CD=2AB=2,故⑤正确.
故选D.
如图:把△ABE绕点A逆时针旋转90度,得到△ADG,则△ABE≌△ADG,∠EAG=∠BAD=90°,∴∠ABE=∠ADG=90°,AE=AG,BE=DG,
∴∠FDG=∠FDA+∠ADG=90°+90°=180°,
∴F、D、G三点共线.
∵EF=BE+DF,
∴EF=DG+DF=GF.
∵在△AGF与△AEF中,
|
∴△AGF≌△AEF(SSS),
∴∠GAF=∠EAF,∠1=∠2,
∵∠GAF+∠EAF=∠EAG=90°,
∴∠EAF=
| 1 |
| 2 |
∵∠1=∠2,AD⊥FG于D,AH⊥EF于H,
∴AD=AH,
∵AD=AB,
∴AH=AB,
又∵AH⊥EF于H,AB⊥BC于B,
∴AE平分∠BEF,故①正确;
∵AE平分∠BEF,
∴∠AEB=∠AEH,
∵∠AEB+∠BAE=90°,∠AEH+∠HAE=90°,
∴∠BAE=∠HAE,
又∵EH⊥AH于H,EB⊥AB于B,
∴BE=HE,
∵BE=DG,
∴HE=DG,
∵EF=HE+FH,GF=DG+FD,EF=GF,
∴FH=FD,故②正确;
∵△AEF≌△AGF,
∴S△EAF=S△GAF.
∵△ABE≌△ADG,
∴S△GAF=S△ADG+S△ADFS△ABE+S△ADF,
∴S△EAF=S△ABE+S△ADF,故④正确;
∵EF=HE+FH,BE=HE,FH=FD,
∴EF=BE+FD,
∴△CEF的周长=EF+EC+CF=BE+FD+EC+CF=BC+CD=2AB=2,故⑤正确.
故选D.
看了如图,在正方形ABCD中,AB...的网友还看了以下:
如图,正方形ABCD边长为6,菱形EFGH的三个顶点E,G,H分别在正方形ABCD的边AB,CD, 2020-04-27 …
用a、b、h分别表示梯形的上底、下底和高,用S表示梯形的面积,那么梯形的面积公式为.当a、b、h分 2020-05-13 …
已知如图,四边形EFGH的顶点E,F,G,H分别在正方形ABCD的边AB,BC,CD,DA上,且A 2020-05-16 …
如图在平行四边形ABCD中,点E,F分别在边AB,CD上,AE=CF,G,H分别是DE,BF中点如 2020-05-16 …
在正方形ABCD中AB=6,E,F,G,H,分别是AB,BC,CD,DA上的点,且EB=FC=GD 2020-05-16 …
如图所示,在空间四边形ABCD中,E,F,G,H分别为AB,BC,CD,DA上的一点,且EFGH为 2020-05-16 …
E,F,G,H分别四边形ABCD的中点,连接EF,GH,FG,HE,当四边形满足什么条件时,四边形 2020-05-16 …
1.已知:在正方形ABCD中,点E,F,G,H分别在AB,BC,CD和DA上,且EG⊥FH,求证: 2020-06-05 …
已知如图四边形abcd中,E,F,G,H分别是AB丶BC丶CD丶DA的中点……已知如图四边形abc 2020-07-13 …
(1)已知:如图,E、F、G、H分别是菱形ABCD的各边上与顶点均不重合的点,且AE=CF=CG= 2020-07-30 …