早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图甲,在平面四边形ABCD中,已知角A=45度,角C=90度,角ADC=105度,AB=BD,现将四边形ABCD沿BD折起,使平面ABD求证(1)DC⊥面ABC(2)设CD=a,求三棱锥A-BFE的体积

题目详情
如图甲,在平面四边形ABCD中,已知角A=45度,角C=90度,角ADC=105度,AB=BD,现将四边形ABCD沿BD折起,使平面ABD
求证 (1)DC⊥面ABC
(2)设CD=a,求三棱锥A-BFE的体积
▼优质解答
答案和解析
1)证明:在图甲中,∵AB=BD,且∠A=45°,
∴∠ADB=45°,∠ABC=90° 即AB⊥BD.
在图乙中,∵平面ABD⊥平面BDC,且平面ABD∩平面BDC=BD,
∴AB⊥底面BDC,∴AB⊥CD.又∠DCB=90°,
∴DC⊥BC,且AB∩BC=B,∴DC⊥平面ABC.
(2)∵E、F分别为AC、AD的中点,∴EF∥CD,
又由(1)知,DC⊥平面ABC,∴EF⊥平面ABC,
∴VA-BFE=VF-AEB=1/3S△AEB*FE,在图甲中,∵∠ADC=105°,∴∠BDC=60°,∠DBC=30°,
由CD=a得BD=2a,BC=根号3a,EF=12CD=12a,∴S△ABC=1/2AB*BC=1/2*2a*根号3a=根号3*a^2,
∴S△AEB=根号3/2 *a^2,∴VA-BFE=1/3*根号3/2a^2*1/2a=根号3/12a^3.