早教吧作业答案频道 -->数学-->
如图,△ABC中,AB=AC=5,∠BAC=100°,点D在线段BC上运动(不与点B、C重合),连接AD,作∠1=∠C,DE交线段AC于点E.(1)若∠BAD=20°,求∠EDC的度数;(2)当DC等于多少时,△ABD≌△DCE?试说
题目详情
如图,△ABC中,AB=AC=5,∠BAC=100°,点D在线段BC上运动(不与点B、C重合),连接AD,作∠1=∠C,DE交线段AC于点E.

(1)若∠BAD=20°,求∠EDC的度数;
(2)当DC等于多少时,△ABD≌△DCE?试说明理由;
(3)△ADE能成为等腰三角形吗?若能,请直接写出此时∠BAD的度数;
若不能,请说明理由.

(1)若∠BAD=20°,求∠EDC的度数;
(2)当DC等于多少时,△ABD≌△DCE?试说明理由;
(3)△ADE能成为等腰三角形吗?若能,请直接写出此时∠BAD的度数;
若不能,请说明理由.
▼优质解答
答案和解析
解(1)∵AB=AC,
∴∠B=∠C=
(180°-∠BAC)=40°,
∵∠1=∠C,
∴∠1=∠B=40°,
∵∠ADC=∠B+∠BAD,∠ADC=∠1+∠EDC.
∴∠EDC=∠BAD=20°
(2)当DC=5时,△ABD≌△DCE;
理由:∵∠ADE=40°,∠B=40°,
又∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC.
∴∠BAD=∠EDC.
在△ABD和△DCE中,
,
∴△ABD≌△DCE(ASA);
(3)当∠BAD=30°时,
∵∠B=∠C=40°,
∴∠BAC=100°,
∵∠ADE=40°,∠BAD=30°,
∴∠DAE=70°,
∴∠AED=180°-40°-70°=70°,
∴DA=DE,这时△ADE为等腰三角形;
当∠BAD=60°时,∵∠B=∠C=40°,
∴∠BAC=100°,
∵∠ADE=40°,∠BAD=60°,∠DAE=40°,
∴EA=ED,这时△ADE为等腰三角形.
∴∠B=∠C=
| 1 |
| 2 |
∵∠1=∠C,
∴∠1=∠B=40°,
∵∠ADC=∠B+∠BAD,∠ADC=∠1+∠EDC.
∴∠EDC=∠BAD=20°
(2)当DC=5时,△ABD≌△DCE;
理由:∵∠ADE=40°,∠B=40°,
又∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC.
∴∠BAD=∠EDC.
在△ABD和△DCE中,
|
∴△ABD≌△DCE(ASA);
(3)当∠BAD=30°时,
∵∠B=∠C=40°,
∴∠BAC=100°,
∵∠ADE=40°,∠BAD=30°,
∴∠DAE=70°,
∴∠AED=180°-40°-70°=70°,
∴DA=DE,这时△ADE为等腰三角形;
当∠BAD=60°时,∵∠B=∠C=40°,
∴∠BAC=100°,
∵∠ADE=40°,∠BAD=60°,∠DAE=40°,
∴EA=ED,这时△ADE为等腰三角形.
看了如图,△ABC中,AB=AC=...的网友还看了以下:
1.a≠0,b≠0,则a/|a|+b/|b|的不同取值的个数为()A.3B.2C.1D.02.若|x 2020-03-31 …
设集合A={1,a,b},B={a,a^2,ab}且A=B,求实数A,B的值因为集合需要满足互异性 2020-05-15 …
如果面的点坐标只有一个代数,怎么求法向量比如说三角形面,A(a,0,0)B(a,a,0)C(0,0 2020-06-04 …
r(A*A^T)=r(A^T*A)=r(A)证明方程AX=0与A^TAX=0同解AX=0显然有A^ 2020-06-10 …
设f(x)=|x(1-x)|,则()A.x=0是f(x)的极值点,但(0,0)不是曲线y=f(x) 2020-06-30 …
假设集合A满足以下条件:诺a∈A,a不等于1,则1-a分之1属于A若a属于A,则1-a分之一属于A 2020-07-03 …
曲线C1:y=ln(x+a)与C2:y=-1/(x+a)-1/a+(a>0)的一条公切线过点(-a 2020-07-09 …
已知关于x的方程ax+b=0,有以下四种说法:①若x=1是该方程的解,则a+b=0;②若a=-1, 2020-07-31 …
递回关系式的运算公式(数列)以下是推导一个公式"a=a+r(1-p^n)/(1-p)"的过程a=p* 2021-01-13 …
如果a、b是有理数,则下列各式子成立的是()A.如果a<0,b<0,那么a+b>0B.如果a>0,b 2021-02-02 …