早教吧作业答案频道 -->其他-->
定积分比较大小的问题教材上说如果函数f、g在[a,b]可积,并且f≥g在[a,b]上成立,那么∫abf(x)dx≥∫abg(x)dx(用∫ab表示定积分了)我想问的是若函数f、g在[a,b]可积,并且f>g在[a,b]上成立,那么
题目详情
定积分比较大小的问题
教材上说如果函数f、g在[a,b]可积,并且f≥g在[a,b]上成立,那么
∫abf(x)dx≥∫abg(x)dx (用∫ab表示定积分了)
我想问的是
若函数f、g在[a,b]可积,并且f>g在[a,b]上成立,那么
∫abf(x)dx>∫abg(x)dx 是否成立??
如果不成立请帮忙举出一个反例
若函数f、g在[a,b]可积,并且f>g在[a,b]上成立,那么
∫abf(x)dx>∫abg(x)dx,我主要是想问,是不是总是严格的大于,而不会有相等的情况呢
教材上说如果函数f、g在[a,b]可积,并且f≥g在[a,b]上成立,那么
∫abf(x)dx≥∫abg(x)dx (用∫ab表示定积分了)
我想问的是
若函数f、g在[a,b]可积,并且f>g在[a,b]上成立,那么
∫abf(x)dx>∫abg(x)dx 是否成立??
如果不成立请帮忙举出一个反例
若函数f、g在[a,b]可积,并且f>g在[a,b]上成立,那么
∫abf(x)dx>∫abg(x)dx,我主要是想问,是不是总是严格的大于,而不会有相等的情况呢
▼优质解答
答案和解析
成立,只要两函数积分存在,证明不会在电脑上写,你去找老师要证明吧 。大略思路:
先做差,得函数f-g恒大于零;如果命题不成立,则有f-g几乎处处为0,矛盾,故命题成立。
如果f-g连续,直接用中值定理,容易多了。
先做差,得函数f-g恒大于零;如果命题不成立,则有f-g几乎处处为0,矛盾,故命题成立。
如果f-g连续,直接用中值定理,容易多了。
看了定积分比较大小的问题教材上说如...的网友还看了以下:
下列命题中,是假命题的是()A.在同一平面内,若a∥b,b∥c,则a∥cB.在同一平面内,若a⊥b 2020-05-17 …
甲乙丙三人在A\B两地植树,A植900棵,B植1250棵,已知甲、乙、丙每天分别植24、30、32 2020-06-04 …
已知抛物线y=-(x-m)2+1与x轴的交点为A、B(B在A的右边),与y轴的交点为C.(1)写出 2020-06-06 …
在静电场中,将一电子从A点移到B点,电场力做了正功,则A.电场强度的方向一定是由A点指向B点B.电 2020-06-17 …
女娄菜是一种雌雄异株的二倍体植物,其花色遗传由两对等位基因A和a、B和b共同控制(如图甲所示).其 2020-07-12 …
女娄菜是一种雌雄异株的二倍体植物,其花色遗传由两对等位基因A和a、B和b共同控制(如图甲所示).其 2020-07-12 …
点A在-3上,点B在12上,两个点同时向左边走,点A每秒走1个单位,点B每秒走4个单位点A在-3点 2020-07-16 …
女娄菜是一种雌雄异株的二倍体植物,其花色遗传由两对等位基因A和a、B和b共同控制(如图甲所示).其 2020-07-20 …
请阅读下面材料:已知点A.B在数轴上分别表示有理数a.b,A.B两点之间的距离表示为/AB/(在这 2020-08-03 …
已知点A(30,20,45)和B(30,30,35),则A与B的相对位置应是?A.A在B之前,在B之 2020-12-05 …