早教吧作业答案频道 -->数学-->
已知函数f(x)=ex-ex,g(x)=2ax+a,其中e为自然对数的底数,a∈R.(1)求证:f(x)≥0;(2)若存在x0∈R,使f(x0)=g(x0),求a的取值范围;(3)若对任意的x∈(-∞,-1),f(x)≥g(
题目详情
已知函数f(x)=ex-ex,g(x)=2ax+a,其中e为自然对数的底数,a∈R.
(1)求证:f(x)≥0;
(2)若存在x0∈R,使f(x0)=g(x0),求a的取值范围;
(3)若对任意的x∈(-∞,-1),f(x)≥g(x)恒成立,求a的最小值.
(1)求证:f(x)≥0;
(2)若存在x0∈R,使f(x0)=g(x0),求a的取值范围;
(3)若对任意的x∈(-∞,-1),f(x)≥g(x)恒成立,求a的最小值.
▼优质解答
答案和解析
(1)f′(x)=ex-e,
∴当x>1时,f′(x)>0,当x<1时,f′(x)<0,
∴f(x)在(-∞,1)上是减函数,在(1,+∞)上是增函数,
∴fmin(x)=f(1)=0,
∴f(x)≥0.
(2)令f(x)=g(x)得a=
,
设h(x)=
,则h′(x)=
,
∴当x>
时,h′(x)>0,当x<
时,h′(x)<0,
∴h(x)在(-∞,
)上是减函数,在(
,+∞)上是增函数,
∵
h(x)=-∞,
h(x)=-
,h(1)=0,
h(x)=+∞,
h(x)=+∞.
∵存在x0∈R,使f(x0)=g(x0),∴a=
有解.
∴a≥0或a<-
.
(3)∵当x∈(-∞,-1)时,f(x)≥g(x)恒成立,即ex-ex≥a(2x+1)在(-∞,-1)上恒成立,
∴a≥
在(-∞,-1)上恒成立.
由(2)可知h(x)=
在(-∞,-1)上是减函数,
且
h(x)=-
,
∴a≥-
.
即a的最小值为-
.
∴当x>1时,f′(x)>0,当x<1时,f′(x)<0,
∴f(x)在(-∞,1)上是减函数,在(1,+∞)上是增函数,
∴fmin(x)=f(1)=0,
∴f(x)≥0.
(2)令f(x)=g(x)得a=
| ex-ex |
| 2x+1 |
设h(x)=
| ex-ex |
| 2x+1 |
| ex(2x-1) |
| (2x+1)2 |
∴当x>
| 1 |
| 2 |
| 1 |
| 2 |
∴h(x)在(-∞,
| 1 |
| 2 |
| 1 |
| 2 |
∵
| lim | ||
x→-
|
| lim |
| x→-∞ |
| e |
| 2 |
| lim | ||
x→-
|
| lim |
| x→+∞ |
∵存在x0∈R,使f(x0)=g(x0),∴a=
| ex-ex |
| 2x+1 |
∴a≥0或a<-
| e |
| 2 |
(3)∵当x∈(-∞,-1)时,f(x)≥g(x)恒成立,即ex-ex≥a(2x+1)在(-∞,-1)上恒成立,
∴a≥
| ex-ex |
| 2x+1 |
由(2)可知h(x)=
| ex-ex |
| 2x+1 |
且
| lim |
| x→-∞ |
| e |
| 2 |
∴a≥-
| e |
| 2 |
即a的最小值为-
| e |
| 2 |
看了已知函数f(x)=ex-ex,...的网友还看了以下:
f(x)=x^3+ax^2-a^2x+m(a>0)若对任意的a∈[3,6],不等式f(x)≤1在X 2020-05-16 …
数学不等式如何确定取值范围?1、已知-2(π)≤α<β≤2(π),求2(α+β),2(α-β)的取 2020-05-19 …
已知f(x)在定义域(0,正无穷)且f(x)为增函数.f(xy)=f(x)+f(y),f(3)=1 2020-06-02 …
已知函数f(x)=x2+ax+3.(1)当x∈R时,f(x)≥a恒成立,求a的范围.(2)当x∈[ 2020-06-11 …
已知函数f(x)=m•2x+2•3x,m∈R.(1)当m=-9时,求满足f(x+1)>f(x)的实 2020-06-12 …
已知:f(x)=(a-2)x2+2(a-2)x-4,(1)当x∈R时,恒有f(x)<0,求a的取值 2020-06-12 …
已知二次函数f(x)=ax3+bx(a,b为常数,且a≠0)满足条件:f(-x+5)=f(x-3) 2020-06-27 …
已知函数Y=f[x]是定义在【0,+无穷】上的增函数,对于任意得x>0,y>0都有 f{xy}=f 2020-06-27 …
把下列词语按要求归类坐井观天、不计其数、成千盈百、兴高采列、奇峰怪石、成群结队、昂首阔歩、刻舟求剑 2020-07-04 …
1指数函数y=(1/5)^x的图象与直线y=x交点的横坐标所在的范围2若a^2>b>a>1,试比较 2020-08-01 …