早教吧作业答案频道 -->数学-->
设数列{an}的前n项的和为Sn,且Sn=4/3an-1/3乘以2^(n+1)+2/3(n属于N,n≥1)(1)证明:数列{an+2^n}是等比数列,并求通项an(2)设bn=(2^n)/Sn,n=1,2,3,……,证明n∑i=1bi小于3/2(n在∑上面,i=1在下面)
题目详情
设数列{an}的前n项的和为Sn,且Sn=4/3an-1/3乘以2^(n+1)+2/3(n属于N,n≥1)
(1)证明:数列{an+2^n}是等比数列,并求通项an(2)设bn=(2^n)/Sn,n=1,2,3,……,证明n∑i=1 bi小于3/2(n在∑上面,i=1在下面)
(1)证明:数列{an+2^n}是等比数列,并求通项an(2)设bn=(2^n)/Sn,n=1,2,3,……,证明n∑i=1 bi小于3/2(n在∑上面,i=1在下面)
▼优质解答
答案和解析
1.Sn=4/3an-1/3*2^(n+1)+2/3,Sn+1=4/3an+1-1/3*2^(n+2)+2/3,S1=a1=4/3a1-1/3*4+2/3=2
Sn+1-Sn=an+1=4/3an+1-4/3an-1/3*2^(n+2)+1/3*2^(n+1)
化简得到4/3an+4/3*2^n=1/3an+1+1/3*2^(n+1)
(an+1+2^(n+1))/ (an+2^n)=4,所以{an+2^n}是等比数列且第一项为4,通项为4^n
所以an=4^n-2^n,Sn=4(1-4^n)/(1-4)+2(1-2^n)
2.设tn=2^n
则bn=(3/4)tn/(tn^2-3/2tn+1/2)=(3/2)tn/((tn-1)(2tn-1))=(3/2)(1/(tn-1)-1/(2tn-1))
将tn带入=(3/2)(1/(2^n-1)-1/(2^(n+1)-1))
提出3/2后可发现当中项可以全部抵消就留下头和尾
=3/2(1-1(2^(n+1)-1))
应为1(2^(n+1)-1))当n趋向无穷大时该值趋向0+所以n∑i=1 bi小于3/2
Sn+1-Sn=an+1=4/3an+1-4/3an-1/3*2^(n+2)+1/3*2^(n+1)
化简得到4/3an+4/3*2^n=1/3an+1+1/3*2^(n+1)
(an+1+2^(n+1))/ (an+2^n)=4,所以{an+2^n}是等比数列且第一项为4,通项为4^n
所以an=4^n-2^n,Sn=4(1-4^n)/(1-4)+2(1-2^n)
2.设tn=2^n
则bn=(3/4)tn/(tn^2-3/2tn+1/2)=(3/2)tn/((tn-1)(2tn-1))=(3/2)(1/(tn-1)-1/(2tn-1))
将tn带入=(3/2)(1/(2^n-1)-1/(2^(n+1)-1))
提出3/2后可发现当中项可以全部抵消就留下头和尾
=3/2(1-1(2^(n+1)-1))
应为1(2^(n+1)-1))当n趋向无穷大时该值趋向0+所以n∑i=1 bi小于3/2
看了设数列{an}的前n项的和为S...的网友还看了以下:
设X~N(-1,2),N(1,3),且X与Y相互独立,则X+2Y~N(1,14)?设X~N(-1, 2020-04-12 …
线代设3元非齐次方程组Ax=b的两个解为a=(1,0,2)T,β=(1,-1,3)T,且系数矩阵线 2020-06-18 …
标题:.急求设3阶方阵A的秩为2,且A2+5A=0则A的全部特征值为.设3阶方阵A的秩为2,且A2 2020-06-30 …
关于判断三角形成立的证明设三角形的三边为a,b,c则三角形成立的条件为“任意两边的和大于第三边”且 2020-07-09 …
设定圆(x+根号3)^2+y^2=16,动圆N过点F(根号3,0)且与圆M相切,记圆心N的轨迹为E 2020-07-26 …
设{a下n}是公比大于1的等比数列,s下n为其前n项和,已知s下3=7,且a下1+3,3a下2,a 2020-07-30 …
在平面直角坐标系xoy中,已知椭圆C:x^2/a^2+y^2/b^2=1(a>b≥1)的离心率e= 2020-08-01 …
1.若复数z满足:|z|=1+3i+z,则:[(1+i)^3(3i-4)]/2z=2.若|z-2- 2020-08-02 …
关于复数!1.设ABCD是复平面内的平行四边形,定点A、B、C分别对应于复数-2-i,-5+6i,3 2020-11-01 …
设定圆M:(x+√3)+y=16,动圆N过点F(√3,0)且与圆M相切,记圆心N的轨迹为E(1)求轨 2021-02-14 …